cpu_target.cpp 15.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>

Paul's avatar
Paul committed
7
8
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
9

10
template <typename T>
11
12
13
14
T zero(const T&)
{
    return T(0);
}
15

Paul's avatar
Paul committed
16
17
18
19
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
20
21
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
22
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
23
    {
Paul's avatar
Paul committed
24
        argument result{output_shape};
Paul's avatar
Paul committed
25
26
27
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
28

Paul's avatar
Paul committed
29
30
31
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
32

Paul's avatar
Paul committed
33
34
35
36
            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
Paul's avatar
Paul committed
37
38
39
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
42
43
44
45
46
47
48
49
50
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
51
52
53
54
55
56
                });
        });
        return result;
    }
};

57
58
struct cpu_reshape
{
59
    reshape op;
60
    std::string name() const { return "cpu::reshape"; }
61
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
62

63
    argument compute(shape output_shape, std::vector<argument> args) const
64
65
66
67
68
    {
        return {output_shape, std::move(args.front().data)};
    }
};

69
70
71
72
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
73
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
74

75
    argument compute(shape output_shape, std::vector<argument> args) const
76
    {
77
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
78
79
80
81
82
83
84
85
        visit_all(result, args[0], args[1])([&](auto cmat, auto amat, auto bmat) {
            auto m = amat.get_shape().lens()[0];
            auto n = bmat.get_shape().lens()[1];
            auto k = bmat.get_shape().lens()[0];

            auto a = amat.data();
            auto b = bmat.data();
            auto c = cmat.data();
86
87
88
89
90
91
            for(int ii = 0; ii < m; ii++)
            {
                for(int jj = 0; jj < n; jj++)
                {
                    c[ii * n + jj] = 0;
                }
92
            }
93
94
95
96
97
98
99
100
101
102
103
            for(int ii = 0; ii < m; ii++)
            {
                for(int kk = 0; kk < k; kk++)
                {
                    auto aik  = a[ii * k + kk];
                    auto* bkj = &b[kk * n];
                    auto* cij = &c[ii * n];
                    for(int jj = 0; jj < n; jj++, cij++, bkj++)
                    {
                        *cij += aik * (*bkj);
                    }
104
105
106
                }
            }
        });
107
        return result;
108
109
110
    }
};

111
struct identity_op
Paul's avatar
Paul committed
112
{
113
114
115
116
117
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
118
};
Paul's avatar
Paul committed
119

120
struct abs_op
121
{
122
123
124
125
126
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
        return [](auto x) { return std::abs(x); };
    }
127
128
};

129
struct exp_op
130
{
131
132
133
134
135
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
136
137
};

138
struct sin_op
139
{
140
141
142
143
144
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
145
146
};

147
struct cos_op
148
{
149
150
151
152
153
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
154
155
};

156
struct tan_op
157
{
158
159
160
161
162
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
163
164
};

165
struct asin_op
166
{
167
168
169
170
171
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
172
173
};

174
struct acos_op
175
{
176
177
178
179
180
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
181
182
};

183
struct atan_op
184
{
185
186
187
188
189
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
190
191
192
193
};

struct tanh_op
{
194
195
196
197
198
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
199
200
201
202
};

struct sigmoid_op
{
203
204
205
206
207
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
208
209
210
211
};

struct neg_op
{
212
213
214
215
216
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
217
218
219
220
};

struct relu_op
{
221
222
223
224
225
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
        return [](auto x) { return x > 0 ? x : 0; };
    }
226
227
228
229
230
};

template <typename Op>
struct cpu_unary
{
231
232
233
234
235
236
237
238
239
240
241
242
243
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
244
245
};

246
struct softmax2d
247
{
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    std::string name() const { return "cpu::softmax2d"; }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
282
283
};

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
struct add_with_broadcast
{
    add op;
    std::string name() const { return "add_with_broadcast"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        size_t ndims = output_shape.lens().size();
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input0, auto input1) {
            if (ndims == 0)
            {
                output(0) = input0(0) + input1(0);
            }
            if (ndims == 1)
            {
                for (size_t i = 0; i < output_shape.lens()[0]; i++) 
                {
                    output(i) = input0(i) + input1(i);
                }
            }
            else if (ndims == 2)
            {
                dfor(output_shape.lens()[0],
                     output_shape.lens()[1])(
                    [&](std::size_t i0, std::size_t i1) {
                    output(i0,i1) = input0(i0,i1) + input1(i0,i1);
                });
            }
            else if (ndims == 3)
            {
                dfor(output_shape.lens()[0],
                     output_shape.lens()[1],
                     output_shape.lens()[2])(
                    [&](std::size_t i0, std::size_t i1, std::size_t i2) {
                    output(i0,i1,i2) = input0(i0,i1,i2) + input1(i0,i1,i2);
                });
            }
            else if (ndims == 4)
            {
                dfor(output_shape.lens()[0],
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
                    [&](std::size_t i0, std::size_t i1, std::size_t i2, std::size_t i3) {
                    output(i0,i1,i2,i3) = input0(i0,i1,i2,i3) + input1(i0,i1,i2,i3);
                });
            }
            else
            {
                RTG_THROW("current not support tensors with ndim > 4");     
            }
        });
        return result;
    }
};

341
342
343
struct add_op
{
    std::string name() const { return "add"; }
344
345
346
347
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
348
349
350
351
352
};

struct sub_op
{
    std::string name() const { return "sub"; }
353
354
355
356
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
357
358
359
360
361
};

struct mul_op
{
    std::string name() const { return "mul"; }
362
363
364
365
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
366
367
368
369
370
};

struct div_op
{
    std::string name() const { return "div"; }
371
372
373
374
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
375
376
377
378
379
};

template <typename Op>
struct cpu_binary
{
380
381
382
383
384
385
386
387
388
389
390
    Op op;
    std::string name() const { return op.name(); }
    shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
    argument compute(shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            std::transform(input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
        });
        return result;
    }
Paul's avatar
Paul committed
391
392
393
394
};

struct cpu_apply
{
Paul's avatar
Paul committed
395
    program* prog;
Paul's avatar
Paul committed
396
397
398

    void apply()
    {
Paul's avatar
Paul committed
399
400
401
402
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "convolution")
            {
Paul's avatar
Paul committed
403
                apply_convolution(it);
Paul's avatar
Paul committed
404
            }
405
406
407
408
409
410
411
412
            else if(it->op.name() == "gemm")
            {
                apply_gemm(it);
            }
            else if(it->op.name() == "reshape")
            {
                apply_reshape(it);
            }
Paul's avatar
Paul committed
413
414
            else if(it->op.name() == "activation")
            {
Paul's avatar
Paul committed
415
416
                apply_activation(it);
            }
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            else if(it->op.name() == "identity")
            {
                apply_identity(it);
            }
            else if(it->op.name() == "softmax")
            {
                apply_softmax(it);
            }
            else if(it->op.name() == "tanh")
            {
                apply_tanh(it);
            }
            else if(it->op.name() == "sigmoid")
            {
                apply_sigmoid(it);
            }
            else if(it->op.name() == "exp")
            {
                apply_exp(it);
            }
            else if(it->op.name() == "neg")
            {
                apply_neg(it);
            }
            else if(it->op.name() == "sin")
            {
                apply_sin(it);
            }
            else if(it->op.name() == "cos")
            {
                apply_cos(it);
            }
            else if(it->op.name() == "tan")
            {
                apply_tan(it);
            }
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
            else if(it->op.name() == "add")
            {
                apply_add(it);
            }
            else if(it->op.name() == "sub")
            {
                apply_sub(it);
            }
            else if(it->op.name() == "mul")
            {
                apply_mul(it);
            }
            else if(it->op.name() == "div")
            {
                apply_div(it);
            }
Paul's avatar
Paul committed
469
470
471
472
473
474
475
476
477
        }
    }

    void apply_convolution(instruction_ref ins)
    {
        auto&& op = any_cast<convolution>(ins->op);
        prog->replace_instruction(ins, cpu_convolution{op}, ins->arguments);
    }

478
479
480
481
482
483
    void apply_gemm(instruction_ref ins)
    {
        auto&& op = any_cast<gemm>(ins->op);
        prog->replace_instruction(ins, cpu_gemm{op}, ins->arguments);
    }

484
485
486
487
488
489
    void apply_reshape(instruction_ref ins)
    {
        auto&& op = any_cast<reshape>(ins->op);
        prog->replace_instruction(ins, cpu_reshape{op}, ins->arguments);
    }

Paul's avatar
Paul committed
490
491
492
493
    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
494
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
495
    }
496
497
498
499
500
501
502
503

    void apply_identity(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<identity_op>{}, ins->arguments);
    }

    void apply_softmax(instruction_ref ins)
    {
504
        prog->replace_instruction(ins, softmax2d{}, ins->arguments);
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    }

    void apply_tanh(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tanh_op>{}, ins->arguments);
    }

    void apply_sigmoid(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sigmoid_op>{}, ins->arguments);
    }

    void apply_exp(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<exp_op>{}, ins->arguments);
    }

    void apply_neg(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<neg_op>{}, ins->arguments);
    }

    void apply_sin(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sin_op>{}, ins->arguments);
    }

    void apply_cos(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<cos_op>{}, ins->arguments);
    }

    void apply_tan(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tan_op>{}, ins->arguments);
    }
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

    void apply_add(instruction_ref ins)
    {
        auto&& op = any_cast<add>(ins->op);
        //prog->replace_instruction(ins, cpu_binary<add_op>{}, ins->arguments);
        prog->replace_instruction(ins, add_with_broadcast{op}, ins->arguments);
    }

    void apply_sub(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_binary<sub_op>{}, ins->arguments);
    }

    void apply_mul(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_binary<mul_op>{}, ins->arguments);
    }

    void apply_div(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_binary<div_op>{}, ins->arguments);
    }
Paul's avatar
Paul committed
563
564
};

Paul's avatar
Paul committed
565
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
566

Paul's avatar
Paul committed
567
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
568
569
570
571

} // namespace cpu

} // namespace rtg