reduce.cpp 5.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>

#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

static const char* const simple_reduce_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/reduce.hpp>
#include <args.hpp>

namespace migraphx {

${preamble}

extern "C" {
__global__ void kernel(void* input_p, void* output_p) 
{
    make_tensors()(input_p, output_p)([](auto input, auto output) {

Paul Fultz II's avatar
Paul Fultz II committed
33
        simple_reduce<reduce::${algo}>(${reduction}, ${init}, input, output, ${read}, ${write});
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    });
}
    
}

} // namespace migraphx

)__migraphx__";

constexpr std::size_t compute_block_size(std::size_t n, std::size_t max_block_size = 1024)
{
    size_t block_size = 128;
    while(block_size <= max_block_size and block_size <= n)
        block_size *= 2;
    return block_size / 2;
}

static std::size_t get_reduce_elements(const std::vector<shape>& inputs)
{
    return inputs.front().elements() / inputs.back().elements();
}
static std::size_t get_reduce_elements(const std::vector<instruction_ref>& inputs)
{
    return get_reduce_elements(to_shapes(inputs));
}

Paul Fultz II's avatar
Paul Fultz II committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
static std::vector<std::size_t> get_reduce_lens(const std::vector<std::size_t>& input_lens,
                                                const std::vector<std::size_t>& output_lens)
{
    std::vector<std::size_t> reduce_lens;
    std::transform(output_lens.begin(),
                   output_lens.end(),
                   input_lens.begin(),
                   std::back_inserter(reduce_lens),
                   [](auto x, auto y) -> std::size_t {
                       if(x == y)
                           return 1;
                       else
                           return y;
                   });
    return reduce_lens;
}

static std::string get_reduce_algo(const std::vector<shape>& inputs)
{
    auto rlens      = get_reduce_lens(inputs.front().lens(), inputs.back().lens());
    const auto init = std::numeric_limits<std::size_t>::max();
    // The minimum stride
    auto min_stride = std::inner_product(
        rlens.begin(),
        rlens.end(),
        inputs.front().strides().begin(),
        init,
        [](auto x, auto y) { return std::min(x, y); },
        [](auto len, auto stride) { return len == 1 ? init : stride; });
    if(min_stride > 2)
        return "lane";
    return "block";
}

94
95
96
97
98
99
100
101
102
103
104
struct reduce_compiler : compiler<reduce_compiler>
{
    std::vector<std::string> names() const
    {
        return {"reduce", "reduce_sum", "reduce_mean", "reduce_max", "reduce_min", "reduce_prod"};
    }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        hip_compile_options options;
        auto reduce_elements = get_reduce_elements(inputs);
Paul Fultz II's avatar
Paul Fultz II committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        auto algo            = v.get("algo", get_reduce_algo(inputs));
        if(algo == "block")
        {
            auto block_size = compute_block_size(reduce_elements, 256);
            options.set_launch_params(
                v, compute_global_for(ctx, inputs.back().elements() * block_size, 256), block_size);
        }
        else if(algo == "lane")
        {
            options.set_launch_params(v, compute_global_for(ctx, inputs.back().elements(), 256));
        }
        else
        {
            MIGRAPHX_THROW("Unknown reduce algo: " + algo);
        }
120
121
122
123
124
125
126
127
128
        options.inputs         = inputs;
        options.output         = inputs.back();
        options.virtual_inputs = reduce_dims(inputs);
        std::string identity   = "[](auto x) { return x; }";
        auto src               = interpolate_string(simple_reduce_kernel,
                                      {{"reduction", v.at("reduction").to<std::string>()},
                                       {"init", v.get("init", std::string{"0"})},
                                       {"read", v.get("read", identity)},
                                       {"write", v.get("write", identity)},
Paul Fultz II's avatar
Paul Fultz II committed
129
                                       {"algo", algo},
130
                                       {"preamble", v.get("preamble", std::string{})}});
Paul Fultz II's avatar
Paul Fultz II committed
131
        options.params += "-Wno-float-equal";
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
        value v              = value::object{};
        auto reduce_elements = get_reduce_elements(ins->inputs());
        if(op.name() == "reduce_sum")
        {
            v["reduction"] = "op::sum{}";
        }
        else if(op.name() == "reduce_mean")
        {
            v["reduction"] = "op::sum{}";
            v["write"]     = "op::mean{" + std::to_string(reduce_elements) + "}";
        }
        else if(op.name() == "reduce_max")
        {
            v["reduction"] = "op::max{}";
            v["init"]      = "lowest{}";
        }
        else if(op.name() == "reduce_min")
        {
            v["reduction"] = "op::min{}";
            v["init"]      = "highest{}";
        }
        else if(op.name() == "reduce_prod")
        {
            v["reduction"] = "op::product{}";
            v["init"]      = "1";
        }
        else
        {
            MIGRAPHX_THROW("Unsupported reduce");
        }
        return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
    }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx