layernorm.cpp 15.5 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
#include <migraphx/gpu/device/layernorm.hpp>
#include <migraphx/gpu/device/reduce.hpp>
#include <migraphx/gpu/device/pow.hpp>
#include <migraphx/gpu/device/fast_div.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
5
6
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
kahmed10's avatar
kahmed10 committed
7
8
9
10
11
12

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

kahmed10's avatar
kahmed10 committed
13
14
15
16
17
18
19
20
#ifndef MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
#if __AMDGCN_WAVEFRONT_SIZE == 32
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 1
#else
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 0
#endif
#endif

21
22
23
24
25
26
27
28
29
30
31
32
33
34
template <class T>
struct vector_type
{
};

template <class T, index_int N>
struct vector_type<vec<T, N>>
{
    using type = T;
};

template <class T>
using vector_type_t = typename vector_type<T>::type;

Paul Fultz II's avatar
Paul Fultz II committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
template <class T>
struct vector_size : std::integral_constant<index_int, 1>
{
};

template <class T, index_int N>
struct vector_size<vec<T, N>> : std::integral_constant<index_int, N>
{
};

template <class T, class F>
__device__ auto vec_transform(T x, F f)
{
    return f(x);
}

template <class T, index_int N, class F>
__device__ auto vec_transform(vec<T, N> x, F f)
{
    vec<T, N> y = x;
    // cppcheck-suppress useStlAlgorithm
    for(index_int k = 0; k < N; k++)
        y[k] = f(x[k]);
    return y;
}

template <class T, class U, class Op>
__device__ auto vec_reduce(T x, U, Op)
{
    return x;
}

template <class T, index_int N, class U, class Op>
__device__ auto vec_reduce(vec<T, N> x, U init, Op op)
{
    T r = init;
    for(index_int k = 0; k < N; k++)
        r = op(r, x[k]);
    return r;
}

template <index_int N, class Op, class T, class F>
__device__ auto auto_block_reduce(index idx, Op op, T init, index_int n, F f)
{
    auto r = block_reduce<N>(idx, op, init, n, f);
    return vec_reduce(r, 0, op);
}

template <index_int MaxBlockSize, class Input, class Output>
Shucai Xiao's avatar
Shucai Xiao committed
84
__device__ void layernorm(index idx, index_int relements, Input input, Output output)
Paul Fultz II's avatar
Paul Fultz II committed
85
86
87
{
    using value_type       = decltype(input(idx.local));
    const auto relements_v = relements / vector_size<value_type>{};
88
    const auto out_idx     = blockIdx.x;
Paul Fultz II's avatar
Paul Fultz II committed
89
90
91
92
93
    const auto base_idx    = out_idx * relements_v;
    const auto input_idx   = base_idx + idx.local;
    const bool in_range    = idx.local < relements_v;

    auto mean = [&](auto z) {
Shucai Xiao's avatar
Shucai Xiao committed
94
95
96
        auto m = auto_block_reduce<MaxBlockSize>(idx, sum{}, value_type(0), relements_v, [=](auto) {
            return z / value_type(relements);
        });
kahmed10's avatar
kahmed10 committed
97
98
99
100
#if MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
        __builtin_amdgcn_s_barrier();
#endif
        return m;
Paul Fultz II's avatar
Paul Fultz II committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    };

    // m = x - mean(x)
    value_type x = in_range ? input(input_idx) : 0;
    value_type m = x - mean(x);

    // mean(m ^ 2) + 1e-12
    value_type r = mean(m * m) + value_type(1e-12);

    // m * rsqrt(mean(m ^ 2) + 1e-12)
    if(in_range)
        output(input_idx, m * vec_transform(r, &rsqrt));
}

kahmed10's avatar
kahmed10 committed
115
116
// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
117

Paul Fultz II's avatar
Paul Fultz II committed
118
template <index_int N, class Input, class Output, class... Arguments>
119
120
void layernorm_vec_impl(hipStream_t stream,
                        index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
121
122
123
124
125
                        index_int relements,
                        Input in,
                        Output out,
                        const argument& result,
                        const Arguments&... args)
kahmed10's avatar
kahmed10 committed
126
{
Paul Fultz II's avatar
Paul Fultz II committed
127
    hip_vec_visit_all<N>(result, args...)([&](auto output, auto... inputs) {
128
129
130
131
132
        const auto relements_v           = relements / N;
        const std::size_t max_block_size = 256;
        const std::size_t block_size     = compute_block_size(relements_v, max_block_size);
        assert(relements_v <= block_size);

133
        gs_launch(stream, nelements * block_size, block_size)([=](auto, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
134
135
136
137
138
139
140
            layernorm<max_block_size>(
                idx,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
141
142
143
144
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
145
template <class Input, class Output, class... Arguments>
146
147
void layernorm_impl(hipStream_t stream,
                    index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
148
149
150
151
152
                    index_int relements,
                    Input in,
                    Output out,
                    const argument& result,
                    const Arguments&... args)
153
{
Paul Fultz II's avatar
Paul Fultz II committed
154
    hip_visit_all(result, args...)([&](auto output, auto... inputs) {
Shucai Xiao's avatar
Shucai Xiao committed
155
        const std::size_t max_block_size = 256;
kahmed10's avatar
kahmed10 committed
156
        const std::size_t block_size     = compute_block_size(relements, max_block_size);
157
        assert(relements <= block_size);
kahmed10's avatar
kahmed10 committed
158

159
        gs_launch(stream, nelements * block_size, block_size)([=](auto, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
160
161
162
163
164
165
166
            layernorm<max_block_size>(
                idx,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
kahmed10's avatar
kahmed10 committed
167
168
169
170
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
171
172
173
174
175
176
177
template <class... Arguments>
auto layernorm_fusion(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const Arguments&... args)
{
    return [=](auto input, auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
178
179
        auto relements = arg1.get_shape().lens().back();
        auto nelements = result.get_shape().elements() / relements;
Paul Fultz II's avatar
Paul Fultz II committed
180
181
182
183
184
185
186
187
188
189
        if((relements % 4) == 0)
            layernorm_vec_impl<4>(
                stream, nelements, relements, input, output, result, arg1, args...);
        else if(relements < 256)
            layernorm_impl(stream, nelements, relements, input, output, result, arg1, args...);
        else
            MIGRAPHX_THROW("No kernel for layernorm");
    };
}

Shucai Xiao's avatar
Shucai Xiao committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
struct half2_sum
{
    MIGRAPHX_DEVICE_CONSTEXPR auto operator()(__half2 x, __half2 y) const { return __hadd2(x, y); }
};

// in_data is in shared memory
template <class Op>
__device__ __half2 block_reduce_half2(
    __half2* buffer, index_int batch_item_num, index_int tid, index_int block_size, Op op)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = op(buffer[tid], buffer[tid + s]);
        }
        __syncthreads();
    }

    auto lows2  = __low2half2(buffer[0]);
    auto highs2 = __high2half2(buffer[0]);

    return op(lows2, highs2);
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
__global__ void triadd_layernorm_kernel_half2(
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
    __half2* input1 = reinterpret_cast<__half2*>(in1);
    __half2* input2 = reinterpret_cast<__half2*>(in2);
    __half2* input3 = reinterpret_cast<__half2*>(in3);
    __half2* output = reinterpret_cast<__half2*>(data_out);
Shucai Xiao's avatar
Shucai Xiao committed
225
    auto rnum       = __float2half2_rn(1.0f / batch_item_num);
Shucai Xiao's avatar
Shucai Xiao committed
226
227
228
229
230
231
232
233
234
235
    batch_item_num /= 2;
    extern MIGRAPHX_DEVICE_SHARED __half2 buffer2[];
    __half2* in_data_reduce = buffer2;
    __half2* in_data        = buffer2 + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = __hadd2(__hadd2(input1[idx], input2[idx]), input3[idx]);
Shucai Xiao's avatar
Shucai Xiao committed
236
237
        in_data_reduce[i] = in_data[i];
        // in_data_reduce[i] = __hmul2(in_data[i], rnum);
Shucai Xiao's avatar
Shucai Xiao committed
238
239
240
241
    }

    auto m =
        block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
Shucai Xiao's avatar
Shucai Xiao committed
242
243
    m = __hmul2(m, rnum);

Shucai Xiao's avatar
Shucai Xiao committed
244
245
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
246
        in_data[i] = __hsub2(in_data[i], m);
Shucai Xiao's avatar
Shucai Xiao committed
247
248
        // in_data_reduce[i] = __hmul2(__hmul2(in_data[i], in_data[i]), rnum);
        in_data_reduce[i] = __hmul2(in_data[i], in_data[i]);
Shucai Xiao's avatar
Shucai Xiao committed
249
250
251
    }

    m = block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
Shucai Xiao's avatar
Shucai Xiao committed
252
    m = __hmul2(m, rnum);
Shucai Xiao's avatar
Shucai Xiao committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    auto eps = __float2half2_rn(1.0e-12f);
    auto r   = __hadd2(m, eps);
    r        = h2rsqrt(r);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
        output[idx] = __hmul2(in_data[i], r);
    }
}

template <class T>
__device__ T
block_reduce_half(T* buffer, index_int batch_item_num, index_int tid, index_int block_size)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = __float2half(__half2float(buffer[tid]) + __half2float(buffer[tid + s]));
        }
        __syncthreads();
    }

    return buffer[0];
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
__global__ void triadd_layernorm_kernel_half(
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
    __half* input1 = reinterpret_cast<__half*>(in1);
    __half* input2 = reinterpret_cast<__half*>(in2);
    __half* input3 = reinterpret_cast<__half*>(in3);
    __half* output = reinterpret_cast<__half*>(data_out);
    extern MIGRAPHX_DEVICE_SHARED __half bufferh[];
    __half* in_data_reduce = bufferh;
    __half* in_data        = bufferh + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    auto rnum = 1.0f / batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = __float2half(__half2float(input1[idx]) + __half2float(input2[idx]) +
                                  __half2float(input3[idx]));
        in_data_reduce[i] = __float2half(__half2float(in_data[i]) * __half2float(rnum));
    }

    auto m = block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size);
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        in_data[i] = __float2half(__half2float(in_data[i]) - __half2float(m));
        in_data_reduce[i] =
            __float2half(__half2float(in_data[i]) * __half2float(in_data[i]) * __half2float(rnum));
    }

    m = __float2half(
        __half2float(block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size)) +
        1.0e-12f);
    auto r = __float2half(rsqrt(__half2float(m)));

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
        output[idx] = __float2half(__half2float(in_data[i]) * __half2float(r));
    }
}

template <class T>
__device__ T block_reduce(T* buffer, index_int batch_item_num, index_int tid, index_int block_size)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = buffer[tid] + buffer[tid + s];
        }
        __syncthreads();
    }

    return buffer[0];
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
template <class T>
__global__ void triadd_layernorm_kernel(
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
    T* input1 = reinterpret_cast<T*>(in1);
    T* input2 = reinterpret_cast<T*>(in2);
    T* input3 = reinterpret_cast<T*>(in3);
    T* output = reinterpret_cast<T*>(data_out);
    extern MIGRAPHX_DEVICE_SHARED T buffer[];
    T* in_data_reduce = buffer;
    T* in_data        = buffer + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    auto rnum = 1.0f / batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = input1[idx] + input2[idx] + input3[idx];
361
362
        in_data_reduce[i] = in_data[i];
        // in_data_reduce[i] = __half2float(in_data[i]) * rnum;
Shucai Xiao's avatar
Shucai Xiao committed
363
364
365
    }

    auto m = block_reduce(in_data_reduce, batch_item_num, threadIdx.x, block_size);
Shucai Xiao's avatar
Shucai Xiao committed
366
    m      = m * rnum;
Shucai Xiao's avatar
Shucai Xiao committed
367
368
369
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        in_data[i]        = in_data[i] - m;
370
371
        in_data_reduce[i] = in_data[i] * in_data[i];
        // in_data_reduce[i] = __half2float(in_data[i] * in_data[i]) * rnum;
Shucai Xiao's avatar
Shucai Xiao committed
372
    }
Shucai Xiao's avatar
Shucai Xiao committed
373
374
    m      = block_reduce(in_data_reduce, batch_item_num, threadIdx.x, block_size);
    m      = m * rnum + 1.0e-12f;
Shucai Xiao's avatar
Shucai Xiao committed
375
376
377
378
    auto r = rsqrt(m);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
379
        int idx = i + start;
380
381
        // output[idx] = __half2float(in_data[i]) * r;
        output[idx] = in_data[i] * r;
Shucai Xiao's avatar
Shucai Xiao committed
382
383
384
    }
}

Paul Fultz II's avatar
Paul Fultz II committed
385
386
387
388
389
390
void triadd_layernorm(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const argument& arg2,
                      const argument& arg3)
{
Shucai Xiao's avatar
Shucai Xiao committed
391
392
393
    auto in_s           = arg1.get_shape();
    auto type           = in_s.type();
    auto batch_item_num = in_s.lens().back();
394
    if(type == shape::half_type and (batch_item_num % 2) == 0)
Shucai Xiao's avatar
Shucai Xiao committed
395
    {
396
397
398
399
400
        auto half2_block_size = compute_block_size(batch_item_num, 1024);
        int block_num         = in_s.elements() / batch_item_num;
        int shared_size       = batch_item_num * 2 * in_s.type_size();
        half2_block_size      = half2_block_size / 4;
        triadd_layernorm_kernel_half2<<<block_num, half2_block_size, shared_size, stream>>>(
Shucai Xiao's avatar
Shucai Xiao committed
401
            arg1.data(), arg2.data(), arg3.data(), result.data(), batch_item_num, half2_block_size);
Shucai Xiao's avatar
Shucai Xiao committed
402
    }
Shucai Xiao's avatar
Shucai Xiao committed
403
404
405
406
407
408
    else
    {
        layernorm_fusion(stream, result, arg1, arg2, arg3)(
            [](auto x, auto y, auto z) { return x + y + z; },
            [](auto x, auto& y, auto...) { y = x; });
    }
Paul Fultz II's avatar
Paul Fultz II committed
409
410
}

Shucai Xiao's avatar
Shucai Xiao committed
411
412
__global__ void
layernorm_kernel_half2(void* in1, void* data_out, index_int batch_item_num, index_int block_size)
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
{
    __half2* input1 = reinterpret_cast<__half2*>(in1);
    __half2* output = reinterpret_cast<__half2*>(data_out);
    auto rnum       = __float2half2_rn(1.0f / batch_item_num);
    batch_item_num /= 2;
    extern MIGRAPHX_DEVICE_SHARED __half2 buffer2[];
    __half2* in_data_reduce = buffer2;
    __half2* in_data        = buffer2 + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = input1[idx];
        in_data_reduce[i] = in_data[i];
    }

    auto m =
        block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
    m = __hmul2(m, rnum);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
436
        in_data[i]        = __hsub2(in_data[i], m);
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        in_data_reduce[i] = __hmul2(in_data[i], in_data[i]);
    }

    m = block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
    m = __hmul2(m, rnum);

    auto eps = __float2half2_rn(1.0e-12f);
    auto r   = __hadd2(m, eps);
    r        = h2rsqrt(r);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
        output[idx] = __hmul2(in_data[i], r);
    }
}

454
455
void layernorm(hipStream_t stream, const argument& result, const argument& arg1)
{
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    auto in_s           = arg1.get_shape();
    auto type           = in_s.type();
    auto batch_item_num = in_s.lens().back();
    if(type == shape::half_type and (batch_item_num % 2) == 0)
    {
        auto half2_block_size = compute_block_size(batch_item_num, 1024);
        int block_num         = in_s.elements() / batch_item_num;
        int shared_size       = batch_item_num * 2 * in_s.type_size();
        half2_block_size      = half2_block_size / 4;
        layernorm_kernel_half2<<<block_num, half2_block_size, shared_size, stream>>>(
            arg1.data(), result.data(), batch_item_num, half2_block_size);
    }
    else
    {
        layernorm_fusion(stream, result, arg1)([](auto x) { return x; },
Shucai Xiao's avatar
Shucai Xiao committed
471
                                               [](auto x, auto& y, auto) { y = x; });
472
    }
473
474
}

kahmed10's avatar
kahmed10 committed
475
476
477
478
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx