onnx_parser.cpp 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul Fultz II's avatar
Paul Fultz II committed
24
25
26
27
28
29
30
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
31
#include <migraphx/common.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
32
33
34
35
36
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>
37
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
38
39
40

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
static shape shape_from_dyn_dims(shape::type_t shape_type,
                                 const std::vector<shape::dynamic_dimension>& dyn_dims)
{
    if(std::all_of(dyn_dims.begin(), dyn_dims.end(), [](auto dd) { return dd.is_fixed(); }))
    {
        std::vector<std::size_t> dims;
        std::transform(dyn_dims.cbegin(), dyn_dims.cend(), std::back_inserter(dims), [](auto d) {
            return d.max;
        });
        return {shape_type, dims};
    }
    return {shape_type, dyn_dims};
}

Paul Fultz II's avatar
Paul Fultz II committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
namespace onnx {

static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
Shucai Xiao's avatar
Shucai Xiao committed
71
72
73
74
75
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
76
        return literal{shape_type};
Shucai Xiao's avatar
Shucai Xiao committed
77
78
    }

Paul Fultz II's avatar
Paul Fultz II committed
79
80
81
82
83
84
85
86
87
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
Shucai Xiao's avatar
Shucai Xiao committed
88
89
90
91
92
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
93
        return literal{shape_type};
Shucai Xiao's avatar
Shucai Xiao committed
94
95
96
    }

    // scalar input
Paul Fultz II's avatar
Paul Fultz II committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
    std::size_t size = r.size();
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
Shucai Xiao's avatar
Shucai Xiao committed
111
112
113
    auto attr       = ins->get_operator().to_value();
    std::string key = "require_std_shape";
    if((attr.get(key, false)) or (not ins->get_shape().standard()))
Paul Fultz II's avatar
Paul Fultz II committed
114
    {
Shucai Xiao's avatar
Shucai Xiao committed
115
        return add_instruction(make_op("contiguous"), ins);
Paul Fultz II's avatar
Paul Fultz II committed
116
117
    }

Shucai Xiao's avatar
Shucai Xiao committed
118
    return ins;
Paul Fultz II's avatar
Paul Fultz II committed
119
120
121
122
123
124
125
126
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Charlie Lin's avatar
Charlie Lin committed
127
128
129
130
131
132
133
134
135
136
137
138
139
        instruction_ref bias_bcast;
        // if curr_ins has a dynamic output shape use 2 input broadcast
        if(curr_ins->get_shape().dynamic())
        {
            bias_bcast =
                mod->add_instruction(make_op("broadcast", {{"axis", axis}}), args[2], curr_ins);
        }
        else
        {
            bias_bcast = mod->add_instruction(
                make_op("broadcast", {{"axis", axis}, {"out_lens", curr_ins->get_shape().lens()}}),
                args[2]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
140
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
141
142
143
144
145
146
147
148
    }
    return curr_ins;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
149
150
151
    return this->add_common_op(op_name, arg0, arg1);
}

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/**
 * @brief A wrapper for insert_common_args(), which constructs an argument list
 * and inserts multibroadcast and convert ops to match inputs to a common shape and type
 * as required.  The requested operation is placed after the added multibroadcast and convert ops,
 * if any, so that their results are transparent to the programmer.
 *
 * Use add_common_op() to match input sizes when inputs may be
 *  either static or dynamic.
 *
 * @param op_name               string; Name of operation (op) to add; valid names are the same as
 * for make_op()
 *
 * @param inputs                vector of instruction_ref.  List of instructions for the new
 * operator.  Multibroadcast and convert operations, if needed, are deduced from these too.
 *
 * @return instruction_ref      Returns an instruction_ref which is the result of the requested
 * operation.
 *
 */
171
172
173
174
instruction_ref onnx_parser::node_info::add_common_op(const std::string& op_name,
                                                      std::vector<instruction_ref> inputs) const
{
    return migraphx::add_common_op(*mod, make_op(op_name), std::move(inputs));
Paul Fultz II's avatar
Paul Fultz II committed
175
176
177
178
179
180
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
181
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
182
183
}

Shucai Xiao's avatar
Shucai Xiao committed
184
185
186
187
188
189
190
instruction_ref onnx_parser::node_info::add_instruction(const operation& op,
                                                        const std::vector<instruction_ref>& args,
                                                        const std::vector<module_ref>& mods) const
{
    return mod->add_instruction(op, args, mods);
}

Paul Fultz II's avatar
Paul Fultz II committed
191
192
instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
193
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
231
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
232
{
233
    if(not contains(instructions, name))
Paul Fultz II's avatar
Paul Fultz II committed
234
    {
Shucai Xiao's avatar
Shucai Xiao committed
235
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
236
237
238
239
240
241
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
242
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
243
244
245
246
247
248
249
250
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
        this->path = parent_path;

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
Shucai Xiao's avatar
Shucai Xiao committed
251
252
253
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
254
255
        if(model.has_graph())
        {
256
            (void)this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
257
258
259
260
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
261
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
262
263
264
265
266
    }
}

void onnx_parser::parse_from(const void* data, std::size_t size)
{
Shucai Xiao's avatar
Shucai Xiao committed
267
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
268
269
270
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
Shucai Xiao's avatar
Shucai Xiao committed
271
272
273
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
274
275
        if(model.has_graph())
        {
276
            (void)this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
277
278
279
280
281
282
283
284
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
{
    const auto& opset_import = model.opset_import();
    int64_t version          = -1;
    for(const auto& opset : opset_import)
    {
        if(opset.has_version())
        {
            version = std::max(version, opset.version());
        }
    }

    return version;
}

300
301
std::vector<instruction_ref>
onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph, bool inlining)
Paul Fultz II's avatar
Paul Fultz II committed
302
{
Shucai Xiao's avatar
Shucai Xiao committed
303
    std::unordered_map<std::string, instruction_ref> mod_insts;
Paul Fultz II's avatar
Paul Fultz II committed
304
305
    for(auto&& f : graph.initializer())
    {
Shucai Xiao's avatar
Shucai Xiao committed
306
307
        // backup instructions in parent mod
        mod_insts[f.name()] = mod->add_literal(parse_tensor(f));
Paul Fultz II's avatar
Paul Fultz II committed
308
309
310
311
312
313
    }

    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
314
        if(not contains(mod_insts, name))
Paul Fultz II's avatar
Paul Fultz II committed
315
        {
316
            // ONNX specification does not specify how to deal with the
Shucai Xiao's avatar
Shucai Xiao committed
317
318
319
320
321
322
323
324
325
            // scenario that a nested subgraph contains a parameter with the
            // name existed in its parent graph.
            // In the current implementation, MIGraphX throws an exception for that.
            if(contains(instructions, name))
            {
                MIGRAPHX_THROW("module \"" + mod->name() + "\" has parameter name \"" + name +
                               "\" existing in parent graph!");
            }

326
            shape s;
Paul Fultz II's avatar
Paul Fultz II committed
327
328
329
330
            std::vector<std::size_t> dims;
            if(map_input_dims.count(name) > 0)
            {
                dims = map_input_dims.at(name);
331
332
333
334
335
                s    = parse_type(input.type(), dims);
            }
            else if(map_dyn_input_dims.count(name) > 0)
            {
                shape::type_t shape_type = get_type(input.type().tensor_type().elem_type());
336
                s = shape_from_dyn_dims(shape_type, map_dyn_input_dims.at(name));
337
338
339
340
            }
            else
            {
                s = parse_type(input.type(), dims);
Paul Fultz II's avatar
Paul Fultz II committed
341
            }
Shucai Xiao's avatar
Shucai Xiao committed
342
            mod_insts[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
343
344
345
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
346
347
    std::copy(mod_insts.begin(), mod_insts.end(), std::inserter(instructions, instructions.end()));

Paul Fultz II's avatar
Paul Fultz II committed
348
349
350
351
352
353
354
    for(auto&& node : graph.node())
    {
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
355
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
        std::size_t output_num = static_cast<std::size_t>(node.output().size());
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
370
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
371
372
373
374
375
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
376
377
378
            std::string node_name = node.op_type() + "_" + std::to_string(mod->size());
            result                = ops[node.op_type()](
                *this, {get_attributes(node), output_num, node_name, mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        }

        output_num = std::min<std::size_t>(output_num, result.size());
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
401
        [&](const auto& name) { return not(name.empty() or instructions.count(name) == 0); });
Paul Fultz II's avatar
Paul Fultz II committed
402
403
404
405
406
407
408

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

409
410
411
412
413
414
415
416
    if(not inlining)
    {
        // add the return instuction
        mod->add_return(output_ins);

        // Remove instructions added in module (this is turned off for subgraph inlining)
        erase_if(instructions, [&](auto&& p) { return mod->has_instruction(p.second); });
    }
Shucai Xiao's avatar
Shucai Xiao committed
417

418
    return output_ins;
Paul Fultz II's avatar
Paul Fultz II committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
    std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
445
446
447
448
    auto type = get_type(t.data_type());
    shape tensor_shape(type, dims);
    auto external_data = t.external_data();
    if(not external_data.empty())
Paul Fultz II's avatar
Paul Fultz II committed
449
    {
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        const std::string& data_file = external_data.at(0).value();
        size_t num_data_fields       = external_data.size();
        size_t offset                = 0;
        size_t nbytes                = tensor_shape.bytes();

        if(num_data_fields > 1) // if offset field is present
        {
            offset = std::stoul(t.external_data().at(1).value());
        }
        if(num_data_fields > 2) // if nbytes field is present
        {
            nbytes = std::stoul(t.external_data().at(2).value());
        }
        auto raw_buffer = read_buffer(path + "/" + data_file, offset, nbytes);
Paul Fultz II's avatar
Paul Fultz II committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        std::string s(raw_buffer.begin(), raw_buffer.end());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
bpickrel's avatar
bpickrel committed
486
    case onnx::TensorProto::FLOAT16: {
Paul Fultz II's avatar
Paul Fultz II committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
                              const std::vector<std::size_t>& input_dims) const
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
509
    if(not input_dims.empty())
Paul Fultz II's avatar
Paul Fultz II committed
510
511
512
513
    {
        return {shape_type, input_dims};
    }

514
    std::vector<shape::dynamic_dimension> dynamic_dims;
Paul Fultz II's avatar
Paul Fultz II committed
515
516
517
    auto&& tensor_dims = t.tensor_type().shape().dim();
    std::transform(tensor_dims.begin(),
                   tensor_dims.end(),
518
519
                   std::back_inserter(dynamic_dims),
                   [&](auto&& d) -> shape::dynamic_dimension {
Paul Fultz II's avatar
Paul Fultz II committed
520
521
522
523
                       if(d.has_dim_value())
                       {
                           if(static_cast<int>(d.dim_value()) <= 0)
                           {
524
                               return default_dyn_dim_value;
Paul Fultz II's avatar
Paul Fultz II committed
525
                           }
526
                           std::size_t tmp = d.dim_value();
527
                           return {tmp, tmp};
Paul Fultz II's avatar
Paul Fultz II committed
528
529
530
                       }
                       else
                       {
531
                           return default_dyn_dim_value;
Paul Fultz II's avatar
Paul Fultz II committed
532
533
534
                       }
                   });

535
536
    if(dynamic_dims.empty())
    {
Paul Fultz II's avatar
Paul Fultz II committed
537
        return {shape_type};
538
    }
539
    return shape_from_dyn_dims(shape_type, dynamic_dims);
Paul Fultz II's avatar
Paul Fultz II committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
}

shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
bpickrel's avatar
bpickrel committed
558
559
    default: {
        MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
Paul Fultz II's avatar
Paul Fultz II committed
560
561
562
563
    }
    }
}

564
565
566
bool is_type_float(shape::type_t dtype)
{
    bool r = false;
567
    if(dtype == shape::float_type or dtype == shape::double_type or dtype == shape::half_type)
568
569
570
571
572
573
    {
        r = true;
    }
    return r;
}

Paul Fultz II's avatar
Paul Fultz II committed
574
575
576
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx