generate_root_modules.cpp 14.7 KB
Newer Older
umang yadav's avatar
umang yadav committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Umang Yadav's avatar
Umang Yadav committed
24
#include "migraphx/instruction_ref.hpp"
umang yadav's avatar
umang yadav committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <cstddef>
#include <limits>
#include <iterator>
#include <unordered_map>
#include <unordered_set>

#include <migraphx/env.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/generate_root_modules.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>

MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DEBUG_PARTITIONER)
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// copied from fuse_pointwise.cpp
static literal get_scalar(instruction_ref ins)
{
    if(ins->name() == "contiguous")
        return get_scalar(ins->inputs().front());
    const auto& s = ins->get_shape();
umang yadav's avatar
umang yadav committed
53
    if(s.elements() != 1 and not(s.scalar()))
umang yadav's avatar
umang yadav committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        return {};
    if(not ins->can_eval())
        return {};
    auto e = ins->eval();
    literal r{};
    // needed for bool as visit_at invokes as() which promotes bool to int8
    // Without this we'll break type checks for logical ops that are fused.
    if(e.get_shape().type() == shape::bool_type)
    {
        r = literal{e.at<bool>()};
    }
    else
    {
        e.visit_at([&](auto x) { r = literal{x}; });
    }
    return r;
}

/*
Given target assignments (tass) for the instructions, generate run_on_target modules subgraphs
automatically. Input graph should be uncompiled migraphx program. target assignments (tass) map
should have a map of instruction to target_id. Instructions that are not inside tass map are
considered to be targeted for the "Ref" by default. params, literals and other builtins shouldn't be
part of the tass, only compute and reshaper instructions should be part of tass. Copy, sync and
alloc instructions would be generated by compiler at later stage, so those shouldn't be considered.
(TODO): CustomOps may require special handling.

Step 1:
Umang Yadav's avatar
Umang Yadav committed
82
83
84
85
86
87
Identify subgraph boundaries:
(a) Boundaries can happen when any output of a node doesn't have same target
assignment as the node itself.
(b) Boundaries can happen when any output of any node doesn't have all its inputs with same target
assignment as the node itself.

umang yadav's avatar
umang yadav committed
88
Ref is used for instructions that do not have assignments.
Umang Yadav's avatar
Umang Yadav committed
89
For example graphs like following:
umang yadav's avatar
umang yadav committed
90
91
92
93
94
1.  Ref --> Target X --> Ref
2.  Ref --> Target X --> Target Y
3.  Target X --> Target Y --> Target Z , in this case target X and target Z can be same
4.  Target X --> "@return"
5.  Target X --> Ref --> "@return"
Umang Yadav's avatar
Umang Yadav committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
6.  When there is a fork in graph :
         Ref
          |
    -------------
    |           |
    |           |
Target X       Ref

7. When there is merge in a graph :

    Target X        Ref
       |             |
       ---------------
             |
         Target X
umang yadav's avatar
umang yadav committed
110
111
112
113
114
115
116
117
118
119
120

Each of those identified regions could have futher nested sub modules which needs to be handled
separately.

Step 2:
Collect parameters and return instructions for the subgraphs identified in Step 1.

Step 3:
Create modules using information collected in step 2 and insert run_on_target instructions.
*/

umang yadav's avatar
umang yadav committed
121
struct auto_gen_root_modules
umang yadav's avatar
umang yadav committed
122
123
{

umang yadav's avatar
umang yadav committed
124
    auto_gen_root_modules(migraphx::program& p, const target_assignments& target_assignments)
umang yadav's avatar
umang yadav committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        : tass(target_assignments)
    {
        auto* mm = p.get_main_module();
        find_subgraphs(mm, p);
        dead_code_elimination{}.apply(p);
    }

    void update_tid_counter(std::size_t tid)
    {
        assert(tid != std::numeric_limits<std::size_t>::max());
        if(tid_counter.find(tid) != tid_counter.end())
        {
            tid_counter[tid]++;
        }
        else
        {
            tid_counter[tid] = 0;
        }
    }

Umang Yadav's avatar
Umang Yadav committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    bool is_different_subgraph(migraphx::instruction_ref ins, size_t tid)
    {
        if(tass.find(ins) == tass.end() or tass.at(ins) != tid)
        {
            return true;
        }
        return false;
    }

    bool is_merge_node(migraphx::instruction_ref ins, size_t tid)
    {
        const auto inputs = ins->inputs();
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto input_ins) {
               if(is_different_subgraph(input_ins, tid))
               {
                   return true;
               }
               return false;
           }))
            return true;
        return false;
    }

    bool is_fork_node(migraphx::instruction_ref ins, size_t tid)
    {
        const auto outputs = ins->outputs();
        if(std::any_of(outputs.begin(), outputs.end(), [&](auto output_ins) {
               if(is_different_subgraph(output_ins, tid) and output_ins->name() != "@return")
               {
                   return true;
               }
               return false;
           }))
            return true;
        return false;
    }

umang yadav's avatar
umang yadav committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    void find_subgraphs(migraphx::module_ref mm, migraphx::program& p)
    {
        // sort the graph in reverse post order DFS order
        mm->sort();
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "sorted module: \n";
            mm->debug_print();
        }

        size_t current_tid = std::numeric_limits<std::size_t>::max();
        for(auto ins : iterator_for(*mm))
        {
            if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
            {
                std::cout << "looking at instruction: \n";
                ins->debug_print();
            }

            // skip all params, literal and builtins other than return, skip "run_on_target_mod"
            // ins
umang yadav's avatar
umang yadav committed
203
204
            if((starts_with(ins->name(), "@") and ins->name() != "@return") or
               skip_ins.count(ins) != 0)
umang yadav's avatar
umang yadav committed
205
206
207
            {
                continue;
            }
Umang Yadav's avatar
Umang Yadav committed
208
209
            else if(ins->name() == "@return" or is_different_subgraph(ins, current_tid) or
                    is_merge_node(ins, current_tid))
umang yadav's avatar
umang yadav committed
210
211
212
            {
                generate_run_on_target_modules(mm, p, ins, current_tid);
            }
Umang Yadav's avatar
Umang Yadav committed
213
214
215
216
217
            else if(is_fork_node(ins, current_tid))
            {
                same_tid_ins_vec.push_back(ins);
                same_tid_ins_set.insert(ins);
                generate_run_on_target_modules(mm, p, std::next(ins), current_tid);
Umang Yadav's avatar
Umang Yadav committed
218
219
220
221
222
223
                if(not same_tid_ins_vec.empty())
                {
                    current_tid = std::numeric_limits<std::size_t>::max();
                    same_tid_ins_set.erase(ins);
                    same_tid_ins_vec.pop_back();
                }
Umang Yadav's avatar
Umang Yadav committed
224
            }
umang yadav's avatar
umang yadav committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            else if(current_tid == std::numeric_limits<std::size_t>::max())
            {
                current_tid = tass.at(ins);
                update_tid_counter(current_tid);
                same_tid_ins_vec.push_back(ins);
                same_tid_ins_set.insert(ins);
            }
            else if(tass.at(ins) == current_tid)
            {
                same_tid_ins_vec.push_back(ins);
                same_tid_ins_set.insert(ins);
            }
            else
            {
                MIGRAPHX_THROW("Partition: this case shouldn't occur");
            }

            if(skip_ins.find(ins) == skip_ins.end() and not ins->module_inputs().empty())
            {
                std::vector<instruction_ref> same_tid_ins_vec_copy        = {};
                std::unordered_set<instruction_ref> same_tid_ins_set_copy = {};
                std::swap(same_tid_ins_set_copy, same_tid_ins_set);
                std::swap(same_tid_ins_vec_copy, same_tid_ins_vec);
umang yadav's avatar
umang yadav committed
248
                for(auto* sub_mod : ins->module_inputs())
umang yadav's avatar
umang yadav committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
                {
                    find_subgraphs(sub_mod, p);
                }
                std::swap(same_tid_ins_set_copy, same_tid_ins_set);
                std::swap(same_tid_ins_vec_copy, same_tid_ins_vec);
                mm->replace_instruction(
                    ins, ins->get_operator(), ins->inputs(), ins->module_inputs());
            }
        }
        assert(same_tid_ins_set.empty() and same_tid_ins_vec.empty());
    }

    void generate_run_on_target_modules(migraphx::module_ref mm,
                                        migraphx::program& p,
                                        migraphx::instruction_ref ins,
                                        std::size_t& current_tid)
    {
        assert(same_tid_ins_vec.size() == same_tid_ins_set.size());
        if(same_tid_ins_vec.empty())
        {
            assert(current_tid == std::numeric_limits<std::size_t>::max());
            return;
        }
        // gather all parameters
        std::unordered_set<instruction_ref> params;
        // gather all return values
        std::unordered_set<instruction_ref> return_ins;
        for(auto tins : iterator_for(same_tid_ins_vec))
        {
            auto inputs  = (*tins)->inputs();
            auto outputs = (*tins)->outputs();
            transform_if(
                inputs.cbegin(),
                inputs.cend(),
                std::inserter(params, params.end()),
                [&](auto in_param) {
                    return (params.count(in_param) == 0 and same_tid_ins_set.count(in_param) == 0);
                },
                [&](auto in_param) { return in_param; });
            if(std::any_of(outputs.begin(), outputs.end(), [&](const auto out_ins) {
                   return same_tid_ins_set.count(out_ins) == 0;
               }))
            {
                return_ins.insert(*tins);
            }
        }
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "params ins: \n";
            for(auto tmp : iterator_for(params))
            {
                (*tmp)->debug_print();
            }
            std::cout << "\n return ins: \n";
            for(auto tmp : iterator_for(return_ins))
            {
                (*tmp)->debug_print();
            }
            std::cout << "\n";
        }

        auto* tmod = p.create_module("target_mod_" + std::to_string(current_tid) + "_" +
                                     std::to_string(tid_counter[current_tid]));
        update_tid_counter(current_tid);
        std::unordered_map<instruction_ref, instruction_ref> params_map;
        std::size_t param_counter = 0;
        std::vector<instruction_ref> rot_ins_params;
        for(auto pins : iterator_for(params))
        {
            auto scalar = get_scalar(*pins);
            if(scalar.empty())
            {
                params_map[*pins] = tmod->add_parameter("param:" + std::to_string(param_counter++),
                                                        (*pins)->get_shape());
                rot_ins_params.push_back(*pins);
            }
            else
            {
                params_map[*pins] = tmod->add_literal(scalar);
            }
        }
umang yadav's avatar
umang yadav committed
330

umang yadav's avatar
umang yadav committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        // TODO: what if params_map is empty ?
        assert(not params_map.empty());
        for(auto tins : iterator_for(same_tid_ins_vec))
        {
            auto inputs = (*tins)->inputs();
            std::vector<instruction_ref> new_inputs;
            std::transform(inputs.begin(),
                           inputs.end(),
                           std::back_inserter(new_inputs),
                           [&](auto input_ins) { return params_map.at(input_ins); });
            auto tmod_tins = tmod->add_instruction(
                (*tins)->get_operator(), new_inputs, (*tins)->module_inputs());
            // add parameter to params map so that it can be looked up by other insturctions
            params_map[*tins] = tmod_tins;
        }
umang yadav's avatar
umang yadav committed
346

umang yadav's avatar
umang yadav committed
347
348
349
350
351
352
353
354
        std::vector<instruction_ref> rins;
        std::unordered_map<instruction_ref, std::size_t> return_ins_idx_map;
        for(auto ritr : iterator_for(return_ins))
        {
            rins.push_back(params_map.at(*ritr));
            return_ins_idx_map[*ritr] = std::distance(ritr, return_ins.begin());
        }
        tmod->add_return(rins);
umang yadav's avatar
umang yadav committed
355

umang yadav's avatar
umang yadav committed
356
357
358
359
360
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "Created target module: " << tmod->name() << "\n";
            tmod->debug_print();
        }
umang yadav's avatar
umang yadav committed
361

umang yadav's avatar
umang yadav committed
362
363
364
365
        // add run_on_target ins
        auto rot_ins = mm->insert_instruction(
            ins, make_op("run_on_target", {{"target_id", current_tid}}), rot_ins_params, {tmod});
        skip_ins.insert(rot_ins);
umang yadav's avatar
umang yadav committed
366

umang yadav's avatar
umang yadav committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        // fetch return instructions from tuple
        for(auto mm_rins : iterator_for(return_ins))
        {
            auto tuple_elem_ins = mm->insert_instruction(
                ins,
                make_op("get_tuple_elem", {{"index", return_ins_idx_map.at(*mm_rins)}}),
                rot_ins);
            skip_ins.insert(tuple_elem_ins);
            // replace returns from tmod in main module
            mm->replace_instruction(*mm_rins, tuple_elem_ins);
        }
        dead_code_elimination{}.apply(*mm);
        // update current_tid
        same_tid_ins_set.clear();
        same_tid_ins_vec.clear();
        if(tass.find(ins) != tass.end())
        {
            current_tid = tass.at(ins);
            update_tid_counter(current_tid);
            same_tid_ins_set.insert(ins);
            same_tid_ins_vec.push_back(ins);
        }
        else
        {
            current_tid = std::numeric_limits<std::size_t>::max();
        }
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "Main module after creation of target module: " << tmod->name() << "\n";
            mm->debug_print();
        }
    }

    private:
    const target_assignments tass;
    std::unordered_map<std::size_t, std::size_t> tid_counter;
    std::unordered_set<instruction_ref> skip_ins;
    std::vector<instruction_ref> same_tid_ins_vec;
    std::unordered_set<instruction_ref> same_tid_ins_set;
};

void generate_root_modules(migraphx::program& p, const target_assignments& tass)
{
umang yadav's avatar
umang yadav committed
410
    auto_gen_root_modules(p, tass);
umang yadav's avatar
umang yadav committed
411
412
413
414
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx