"examples/tutorials/quantization_speedup.py" did not exist on "5ab984a41657c84f1889f08f0ddf7d901a7d7b05"
generate_root_modules.cpp 12.9 KB
Newer Older
umang yadav's avatar
umang yadav committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <cstddef>
#include <limits>
#include <iterator>
#include <unordered_map>
#include <unordered_set>

#include <migraphx/env.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/generate_root_modules.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>

MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DEBUG_PARTITIONER)
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// copied from fuse_pointwise.cpp
static literal get_scalar(instruction_ref ins)
{
    if(ins->name() == "contiguous")
        return get_scalar(ins->inputs().front());
    const auto& s = ins->get_shape();
    if(s.elements() != 1 && not(s.scalar()))
        return {};
    if(not ins->can_eval())
        return {};
    auto e = ins->eval();
    literal r{};
    // needed for bool as visit_at invokes as() which promotes bool to int8
    // Without this we'll break type checks for logical ops that are fused.
    if(e.get_shape().type() == shape::bool_type)
    {
        r = literal{e.at<bool>()};
    }
    else
    {
        e.visit_at([&](auto x) { r = literal{x}; });
    }
    return r;
}

/*
Given target assignments (tass) for the instructions, generate run_on_target modules subgraphs
automatically. Input graph should be uncompiled migraphx program. target assignments (tass) map
should have a map of instruction to target_id. Instructions that are not inside tass map are
considered to be targeted for the "Ref" by default. params, literals and other builtins shouldn't be
part of the tass, only compute and reshaper instructions should be part of tass. Copy, sync and
alloc instructions would be generated by compiler at later stage, so those shouldn't be considered.
(TODO): CustomOps may require special handling.

Step 1:
Identify subgraph boundaries
Ref is used for instructions that do not have assignments.
Boundaries can happen in following cases.
1.  Ref --> Target X --> Ref
2.  Ref --> Target X --> Target Y
3.  Target X --> Target Y --> Target Z , in this case target X and target Z can be same
4.  Target X --> "@return"
5.  Target X --> Ref --> "@return"

Each of those identified regions could have futher nested sub modules which needs to be handled
separately.

Step 2:
Collect parameters and return instructions for the subgraphs identified in Step 1.

Step 3:
Create modules using information collected in step 2 and insert run_on_target instructions.
*/

struct AutoGenRootModules
{

    AutoGenRootModules(migraphx::program& p, const target_assignments& target_assignments)
        : tass(target_assignments)
    {
        auto* mm = p.get_main_module();
        find_subgraphs(mm, p);
        dead_code_elimination{}.apply(p);
    }

    void update_tid_counter(std::size_t tid)
    {
        assert(tid != std::numeric_limits<std::size_t>::max());
        if(tid_counter.find(tid) != tid_counter.end())
        {
            tid_counter[tid]++;
        }
        else
        {
            tid_counter[tid] = 0;
        }
    }

    void find_subgraphs(migraphx::module_ref mm, migraphx::program& p)
    {
        // sort the graph in reverse post order DFS order
        mm->sort();
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "sorted module: \n";
            mm->debug_print();
        }

        size_t current_tid = std::numeric_limits<std::size_t>::max();
        for(auto ins : iterator_for(*mm))
        {
            if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
            {
                std::cout << "looking at instruction: \n";
                ins->debug_print();
                std::cout << "\n";
            }

            if(ins->name() == "@return")
            {
                generate_run_on_target_modules(mm, p, ins, current_tid);
            }
            // skip all params, literal and builtins other than return, skip "run_on_target_mod"
            // ins
            else if(starts_with(ins->name(), "@") or skip_ins.count(ins) != 0)
            {
                continue;
            }
            else if(tass.find(ins) == tass.end())
            {
                generate_run_on_target_modules(mm, p, ins, current_tid);
            }
            else if(current_tid == std::numeric_limits<std::size_t>::max())
            {
                current_tid = tass.at(ins);
                update_tid_counter(current_tid);
                same_tid_ins_vec.push_back(ins);
                same_tid_ins_set.insert(ins);
            }
            else if(tass.at(ins) == current_tid)
            {
                same_tid_ins_vec.push_back(ins);
                same_tid_ins_set.insert(ins);
            }
            else if(tass.at(ins) != current_tid)
            {
                generate_run_on_target_modules(mm, p, ins, current_tid);
            }
            else
            {
                MIGRAPHX_THROW("Partition: this case shouldn't occur");
            }

            if(skip_ins.find(ins) == skip_ins.end() and not ins->module_inputs().empty())
            {
                std::vector<instruction_ref> same_tid_ins_vec_copy        = {};
                std::unordered_set<instruction_ref> same_tid_ins_set_copy = {};
                std::swap(same_tid_ins_set_copy, same_tid_ins_set);
                std::swap(same_tid_ins_vec_copy, same_tid_ins_vec);
                for(auto sub_mod : ins->module_inputs())
                {
                    find_subgraphs(sub_mod, p);
                }
                std::swap(same_tid_ins_set_copy, same_tid_ins_set);
                std::swap(same_tid_ins_vec_copy, same_tid_ins_vec);
                mm->replace_instruction(
                    ins, ins->get_operator(), ins->inputs(), ins->module_inputs());
            }
        }
        assert(same_tid_ins_set.empty() and same_tid_ins_vec.empty());
    }

    void generate_run_on_target_modules(migraphx::module_ref mm,
                                        migraphx::program& p,
                                        migraphx::instruction_ref ins,
                                        std::size_t& current_tid)
    {
        assert(same_tid_ins_vec.size() == same_tid_ins_set.size());
        if(same_tid_ins_vec.empty())
        {
            assert(current_tid == std::numeric_limits<std::size_t>::max());
            return;
        }
        // gather all parameters
        std::unordered_set<instruction_ref> params;
        // gather all return values
        std::unordered_set<instruction_ref> return_ins;
        for(auto tins : iterator_for(same_tid_ins_vec))
        {
            auto inputs  = (*tins)->inputs();
            auto outputs = (*tins)->outputs();
            transform_if(
                inputs.cbegin(),
                inputs.cend(),
                std::inserter(params, params.end()),
                [&](auto in_param) {
                    return (params.count(in_param) == 0 and same_tid_ins_set.count(in_param) == 0);
                },
                [&](auto in_param) { return in_param; });
            if(std::any_of(outputs.begin(), outputs.end(), [&](const auto out_ins) {
                   return same_tid_ins_set.count(out_ins) == 0;
               }))
            {
                return_ins.insert(*tins);
            }
        }
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "params ins: \n";
            for(auto tmp : iterator_for(params))
            {
                (*tmp)->debug_print();
            }
            std::cout << "\n return ins: \n";
            for(auto tmp : iterator_for(return_ins))
            {
                (*tmp)->debug_print();
            }
            std::cout << "\n";
        }

        std::cout << "1\n";
        auto* tmod = p.create_module("target_mod_" + std::to_string(current_tid) + "_" +
                                     std::to_string(tid_counter[current_tid]));
        update_tid_counter(current_tid);
        std::unordered_map<instruction_ref, instruction_ref> params_map;
        std::size_t param_counter = 0;
        std::vector<instruction_ref> rot_ins_params;
        for(auto pins : iterator_for(params))
        {
            auto scalar = get_scalar(*pins);
            if(scalar.empty())
            {
                params_map[*pins] = tmod->add_parameter("param:" + std::to_string(param_counter++),
                                                        (*pins)->get_shape());
                rot_ins_params.push_back(*pins);
            }
            else
            {
                params_map[*pins] = tmod->add_literal(scalar);
            }
        }
        std::cout << "2\n";
        // TODO: what if params_map is empty ?
        assert(not params_map.empty());
        for(auto tins : iterator_for(same_tid_ins_vec))
        {
            auto inputs = (*tins)->inputs();
            std::vector<instruction_ref> new_inputs;
            std::transform(inputs.begin(),
                           inputs.end(),
                           std::back_inserter(new_inputs),
                           [&](auto input_ins) { return params_map.at(input_ins); });
            auto tmod_tins = tmod->add_instruction(
                (*tins)->get_operator(), new_inputs, (*tins)->module_inputs());
            // add parameter to params map so that it can be looked up by other insturctions
            params_map[*tins] = tmod_tins;
        }
        std::cout << "3\n";
        std::vector<instruction_ref> rins;
        std::unordered_map<instruction_ref, std::size_t> return_ins_idx_map;
        std::cout << "4\n";
        for(auto ritr : iterator_for(return_ins))
        {
            rins.push_back(params_map.at(*ritr));
            return_ins_idx_map[*ritr] = std::distance(ritr, return_ins.begin());
        }
        tmod->add_return(rins);
        std::cout << "5\n";
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "Created target module: " << tmod->name() << "\n";
            tmod->debug_print();
        }
        // add run_on_target ins
        auto rot_ins = mm->insert_instruction(
            ins, make_op("run_on_target", {{"target_id", current_tid}}), rot_ins_params, {tmod});
        skip_ins.insert(rot_ins);
        // fetch return instructions from tuple
        for(auto mm_rins : iterator_for(return_ins))
        {
            auto tuple_elem_ins = mm->insert_instruction(
                ins,
                make_op("get_tuple_elem", {{"index", return_ins_idx_map.at(*mm_rins)}}),
                rot_ins);
            skip_ins.insert(tuple_elem_ins);
            // replace returns from tmod in main module
            mm->replace_instruction(*mm_rins, tuple_elem_ins);
        }
        dead_code_elimination{}.apply(*mm);
        // update current_tid
        same_tid_ins_set.clear();
        same_tid_ins_vec.clear();
        if(tass.find(ins) != tass.end())
        {
            current_tid = tass.at(ins);
            update_tid_counter(current_tid);
            same_tid_ins_set.insert(ins);
            same_tid_ins_vec.push_back(ins);
        }
        else
        {
            current_tid = std::numeric_limits<std::size_t>::max();
        }
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "Main module after creation of target module: " << tmod->name() << "\n";
            mm->debug_print();
        }
    }

    private:
    const target_assignments tass;
    std::unordered_map<std::size_t, std::size_t> tid_counter;
    std::unordered_set<instruction_ref> skip_ins;
    std::vector<instruction_ref> same_tid_ins_vec;
    std::unordered_set<instruction_ref> same_tid_ins_set;
};

void generate_root_modules(migraphx::program& p, const target_assignments& tass)
{
    AutoGenRootModules(p, tass);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx