cpu_target.cpp 11.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>

Paul's avatar
Paul committed
7
8
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
9

10
template <typename T>
Scott Thornton's avatar
Scott Thornton committed
11
T zero(const T&) { return T(0); }
12

Paul's avatar
Paul committed
13
14
15
16
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
17
18
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
19
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
20
    {
Paul's avatar
Paul committed
21
        argument result{output_shape};
Paul's avatar
Paul committed
22
23
24
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
25

Paul's avatar
Paul committed
26
27
28
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
29

Paul's avatar
Paul committed
30
31
32
33
            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
Paul's avatar
Paul committed
34
35
36
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
37

Paul's avatar
Paul committed
38
39
40
41
42
43
44
45
46
47
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
48
49
50
51
52
53
                });
        });
        return result;
    }
};

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
struct cpu_reshape
{
    reshape op; 
    std::string name() const { return "cpu::reshape"; }
    shape compute_shape(std::vector<shape> inputs) const
    {
        return op.compute_shape(inputs);
    }

    argument compute(shape output_shape, std::vector<argument> args) const 
    {
        return {output_shape, std::move(args.front().data)};
    }
};

69
70
71
72
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
73
    shape compute_shape(std::vector<shape> inputs) const
74
75
76
77
78
79
    {
        return op.compute_shape(inputs);
    }

    argument compute(shape output_shape, std::vector<argument> args) const 
    {
80
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
81
82
83
84
85
86
87
88
89
90
91
        visit_all(result, args[0], args[1])([&](auto cmat, auto amat, auto bmat) {
            auto m = amat.get_shape().lens()[0];
            auto n = bmat.get_shape().lens()[1];
            auto k = bmat.get_shape().lens()[0];

            auto a = amat.data();
            auto b = bmat.data();
            auto c = cmat.data();
            for (int ii = 0; ii < m; ii++) {
              for (int jj = 0; jj < n; jj++) {
                c[ii*n+jj] = 0;
92
93
              }
            }
Scott Thornton's avatar
Scott Thornton committed
94
95
96
97
98
99
            for (int ii = 0; ii < m; ii++) {
              for (int kk = 0; kk < k; kk++) {
                auto aik = a[ii*k+kk];
                auto* bkj = &b[kk*n];
                auto* cij = &c[ii*n];
                for (int jj = 0; jj < n; jj++, cij++, bkj++) {
100
101
102
103
104
                  *cij += aik*(*bkj);
                }
              }
            }
        });
105
        return result;
106
107
108
    }
};

109
struct identity_op
Paul's avatar
Paul committed
110
{
111
    std::string name() const {return "cpu::identity"; }
112
    auto fcn() const { return [](auto x) { return x; }; }
113
};
Paul's avatar
Paul committed
114

115
116
117
struct abs_op 
{
    std::string name() const {return "cpu::abs"; }
118
    auto fcn() const { return [](auto x) { return std::abs(x); }; }
119
120
121
122
123
};

struct exp_op 
{
    std::string name() const {return "cpu::exp"; }
124
    auto fcn() const { return [](auto x) { return std::exp(x); }; }
125
126
127
128
129
};

struct sin_op 
{
    std::string name() const {return "cpu::sin"; }
130
    auto fcn() const { return [](auto x) { return std::sin(x); }; }
131
132
133
134
135
};

struct cos_op 
{
    std::string name() const {return "cpu::cos"; }
136
    auto fcn() const { return [](auto x) { return std::cos(x); }; }
137
138
139
140
141
};

struct tan_op 
{
    std::string name() const {return "cpu::tan"; }
142
    auto fcn() const { return [](auto x) { return std::tan(x); }; }
143
144
145
146
147
};

struct asin_op 
{
    std::string name() const {return "cpu::asin"; }
148
    auto fcn() const { return [](auto x) { return std::asin(x); }; }
149
150
151
152
153
};

struct acos_op 
{
    std::string name() const {return "cpu::acos"; }
154
    auto fcn() const { return [](auto x) { return std::acos(x); }; }
155
156
157
158
159
};

struct atan_op 
{
    std::string name() const {return "cpu::atan"; }
160
    auto fcn() const { return [](auto x) { return std::atan(x); }; }
161
162
163
164
165
};

struct tanh_op
{
    std::string name() const {return "cpu::tanh"; }
166
    auto fcn() const { return [](auto x) { return std::tanh(x); }; }
167
168
169
170
171
};

struct sigmoid_op
{
    std::string name() const {return "cpu::sigmoid"; }
172
    auto fcn() const { return [](auto x) { return 1.f/(1.f + std::exp(-x)); }; }
173
174
175
176
177
};

struct neg_op
{
    std::string name() const {return "cpu::neg"; }
178
    auto fcn() const { return [](auto x) { return -x; }; }
179
180
181
182
183
184
185
186
187
188
189
190
};

struct relu_op
{
    std::string name() const {return "cpu::relu"; }
    auto fcn() const { return [](auto x) { return x > 0 ? x : 0; }; }
};

template <typename Op>
struct cpu_unary
{
  Op op;
191
  std::string name() const { return op.name(); }
192
193
194
195
196
197
198
199
200
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      result.visit([&](auto output) {
          args[0].visit([&](auto input) {
              std::transform(input.begin(), input.end(), output.begin(), op.fcn());
          });
      });
201
202
203
204
      return result;
  }
};

205
struct softmax2d
206
{
207
  std::string name() const { return "cpu::softmax2d"; }
208
209
210
211
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      visit_all(result, args[0])([&](auto output, auto input) {
          using value_type = typename decltype(input)::value_type;
          auto nb = input.get_shape().lens()[0];
          auto nc = input.get_shape().lens()[1]; 
          auto nh = input.get_shape().lens()[2]; 
          auto nw = input.get_shape().lens()[3];
          for (int b = 0; b < nb; b++) {
              for (int i = 0; i < nh; i++) {
                  for (int j = 0; j < nw; j++) {
                      value_type cmax = std::numeric_limits<value_type>::lowest();
                      for (int c = 0; c < nc; c++) {
                          cmax = std::max(cmax, input(b, c, i, j)); 
                      }
                      for (int c = 0; c < nc; c++) {
                          output(b, c, i, j) = std::exp(input(b, c, i, j)-cmax);
                      }
                      value_type sum = value_type(0);
                      for (int c = 0; c < nc; c++) {
                          sum += output(b, c, i, j);
                      }
                      for (int c = 0; c < nc; c++) {
                          output(b, c, i, j) = output(b, c, i, j)/sum;
                      }
                  }
              }
         } 
238
      });
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
      return result;
  }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const { return [](auto x, auto y) {return x + y;};}
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const { return [](auto x, auto y) {return x - y;};}
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const { return [](auto x, auto y) {return x * y;};}
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const { return [](auto x, auto y) {return x / y;};}
};

template <typename Op>
struct cpu_binary
{
  Op op;
  std::string name() const { op.name(); }
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
          std::transform(input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
          });
      return result;
  }
Paul's avatar
Paul committed
281
282
283
284
};

struct cpu_apply
{
Paul's avatar
Paul committed
285
    program* prog;
Paul's avatar
Paul committed
286
287
288

    void apply()
    {
Paul's avatar
Paul committed
289
290
291
292
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "convolution")
            {
Paul's avatar
Paul committed
293
                apply_convolution(it);
Paul's avatar
Paul committed
294
            }
295
296
297
298
299
300
301
302
            else if(it->op.name() == "gemm")
            {
                apply_gemm(it);
            }
            else if(it->op.name() == "reshape")
            {
                apply_reshape(it);
            }
Paul's avatar
Paul committed
303
304
            else if(it->op.name() == "activation")
            {
Paul's avatar
Paul committed
305
306
                apply_activation(it);
            }
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
            else if(it->op.name() == "identity")
            {
                apply_identity(it);
            }
            else if(it->op.name() == "softmax")
            {
                apply_softmax(it);
            }
            else if(it->op.name() == "tanh")
            {
                apply_tanh(it);
            }
            else if(it->op.name() == "sigmoid")
            {
                apply_sigmoid(it);
            }
            else if(it->op.name() == "exp")
            {
                apply_exp(it);
            }
            else if(it->op.name() == "neg")
            {
                apply_neg(it);
            }
            else if(it->op.name() == "sin")
            {
                apply_sin(it);
            }
            else if(it->op.name() == "cos")
            {
                apply_cos(it);
            }
            else if(it->op.name() == "tan")
            {
                apply_tan(it);
            }
Paul's avatar
Paul committed
343
344
345
346
347
348
349
350
351
        }
    }

    void apply_convolution(instruction_ref ins)
    {
        auto&& op = any_cast<convolution>(ins->op);
        prog->replace_instruction(ins, cpu_convolution{op}, ins->arguments);
    }

352
353
354
355
356
357
    void apply_gemm(instruction_ref ins)
    {
        auto&& op = any_cast<gemm>(ins->op);
        prog->replace_instruction(ins, cpu_gemm{op}, ins->arguments);
    }

358
359
360
361
362
363
    void apply_reshape(instruction_ref ins)
    {
        auto&& op = any_cast<reshape>(ins->op);
        prog->replace_instruction(ins, cpu_reshape{op}, ins->arguments);
    }

Paul's avatar
Paul committed
364
365
366
367
    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
368
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
369
    }
370
371
372
373
374
375
376
377

    void apply_identity(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<identity_op>{}, ins->arguments);
    }

    void apply_softmax(instruction_ref ins)
    {
378
        prog->replace_instruction(ins, softmax2d{}, ins->arguments);
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    }

    void apply_tanh(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tanh_op>{}, ins->arguments);
    }

    void apply_sigmoid(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sigmoid_op>{}, ins->arguments);
    }

    void apply_exp(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<exp_op>{}, ins->arguments);
    }

    void apply_neg(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<neg_op>{}, ins->arguments);
    }

    void apply_sin(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<sin_op>{}, ins->arguments);
    }

    void apply_cos(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<cos_op>{}, ins->arguments);
    }

    void apply_tan(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_unary<tan_op>{}, ins->arguments);
    }
Paul's avatar
Paul committed
415
416
};

Paul's avatar
Paul committed
417
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
418

Paul's avatar
Paul committed
419
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
420
421
422
423

} // namespace cpu

} // namespace rtg