fuse_mlir.cpp 20.2 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_EXTRA_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MLIR);
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);
53

54
55
56
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
57
58
    const bool mlir_disabled = enabled(MIGRAPHX_DISABLE_MLIR{});
    return not mlir_disabled;
59
60
61
62
63
#else
    return false;
#endif
}

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
static bool is_requested(std::string_view option, bool fallback = false)
{
    auto string_value = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
    if(string_value.empty())
        return fallback;
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}

bool mlir_attention_enabled()
{
#ifdef MIGRAPHX_MLIR
    if(not mlir_enabled())
        return false;
    return is_requested("attention");
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
84
#ifdef MIGRAPHX_MLIR
85
86

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
87
{
88
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
89
90
91
92
93
94
95
96
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

97
    shape compute_shape(const std::vector<shape>& inputs, const std::vector<module_ref>& mods) const
Paul Fultz II's avatar
Paul Fultz II committed
98
    {
99
        module_ref mod = mods[0];
100
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
101
102
103
104
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
105

106
        auto type = mod->get_output_shapes().front().type();
107
108
109
        std::unordered_map<instruction_ref, shape> ins_shapes;
        for(auto ins : iterator_for(*mod))
        {
110
            if(ins->name() == "@literal" or ins->name() == "@param")
111
112
113
114
115
116
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
117
118
119
120
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
121
122
123
124
125
126
127
128
129
130
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
131
132
    }
};
133
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
134
135

namespace {
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

std::tuple<instruction_ref, std::vector<operation>>
get_fusable_input_op_stream(instruction_ref lower_input)
{
    instruction_ref upper_input = lower_input;
    std::vector<operation> op_stream;
    while(
        contains({"slice", "transpose", "contiguous", "reshape", "squeeze", "flatten", "unsqueeze"},
                 upper_input->name()))
    {
        operation op = upper_input->get_operator();
        if(contains({"squeeze", "flatten", "unsqueeze"}, upper_input->name()))
        {
            op = migraphx::make_op("reshape", {{"dims", upper_input->get_shape().lens()}});
        }
        op_stream.push_back(op);
        upper_input = upper_input->inputs().at(0);
    }
    return {upper_input, op_stream};
}

157
std::tuple<instruction_ref, std::vector<instruction_ref>>
158
159
160
fuse_input_ops_and_gemm_based_op(module_ref mm,
                                 const std::vector<instruction_ref>& gemm_based_op_inputs,
                                 const operation& gemm_based_op)
161
162
163
164
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
165
    for(instruction_ref input : gemm_based_op_inputs)
166
    {
167
168
        auto [upper_input, op_stream] = get_fusable_input_op_stream(input);
        top_inputs.push_back(upper_input);
169
        instruction_ref prev_input =
170
            mm->add_parameter("y" + std::to_string(input_cnt++), upper_input->get_shape());
171
172
173
174
175
176
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
177
    instruction_ref new_gemm_based_op = mm->add_instruction(gemm_based_op, imm_inputs);
178
179
    return {new_gemm_based_op, top_inputs};
}
180

181
enum class mlir_mode
182
{
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    all,
    fast,
    int8,
    none
};

auto is_mlir_dot(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "dot" and ins->name() != "quant_dot")
            return false;
        if(mode != mlir_mode::fast)
            return true;
        auto a = ins->inputs().front()->get_shape();
        auto b = ins->inputs().back()->get_shape();
        // auto m = a.lens()[a.lens().size() - 2];
        // auto n = b.lens().back();
        auto k = a.lens().back();
        // Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
        // to avoid poor-performing GEMM kernels from MLIR
        // To-do: Investigate a more precise strategy
        return k <= 2048;
    });
}

auto is_mlir_conv(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "convolution" and ins->name() != "quant_convolution")
            return false;
Umang Yadav's avatar
Umang Yadav committed
217
        auto input_arg_t = ins->inputs().front()->get_shape().type();
218
219
220
221
222
223
224
        value v    = ins->get_operator().to_value();
        auto group = v.at("group").to<int>();
        if(group != 1)
            return false;
        // Avoid MLIR assertion: Index < Length && "Invalid index!"
        if(ins->get_shape().lens().size() != 4)
            return false;
Umang Yadav's avatar
Umang Yadav committed
225
226
        if(ins->get_shape().type() == shape::fp8e4m3fnuz_type)
            return true;
Umang Yadav's avatar
Umang Yadav committed
227
228
        if(ins->get_shape().type() == shape::float_type and input_arg_t == shape::fp8e4m3fnuz_type)
            return true;
Umang Yadav's avatar
Umang Yadav committed
229
230
        if(ins->get_shape().type() == shape::int8_type)
            return true;
231
232
233
234
235
236
237
238
239
240
241
        if(mode == mlir_mode::int8)
            return false;
        if(mode == mlir_mode::all)
            return true;
        auto w = ins->inputs().at(1)->get_shape();
        if(w.lens().size() != 4)
            return true;
        if(w.lens()[2] != w.lens()[3])
            return true;
        return (w.lens()[3] % 3) != 0;
    });
242
243
}

244
245
std::unordered_map<instruction_ref, instruction_ref>
create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape)
Paul Fultz II's avatar
Paul Fultz II committed
246
{
247
248
    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(*pm))
Paul Fultz II's avatar
Paul Fultz II committed
249
    {
250
        if(ins->name() != "@literal")
251
        {
252
            continue;
253
        }
254
255
256
257
258
        literal r               = ins->get_literal();
        instruction_ref literal = mm->add_literal(r);
        instruction_ref mbcast =
            mm->add_instruction(make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
        ins_map[ins] = mbcast;
259
    }
260
261
    return ins_map;
}
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
std::vector<instruction_ref>
fold_pointwise_mod(instruction_ref pm_ins,
                   module_ref parent_mod,
                   const std::unordered_map<instruction_ref, instruction_ref>& ins_map)
{
    auto* pm   = pm_ins->module_inputs().front();
    auto names = pm->get_parameter_names();
    std::sort(names.begin(), names.end());
    std::unordered_map<instruction_ref, instruction_ref> param_map =
        create_param_map_with_literals(parent_mod, pm, pm_ins->get_shape());
    std::transform(names.begin(),
                   names.end(),
                   pm_ins->inputs().begin(),
                   std::inserter(param_map, param_map.end()),
                   [&](auto name, auto input) {
                       if(ins_map.count(input))
                           return std::make_pair(pm->get_parameter(name), ins_map.at(input));
                       return std::make_pair(pm->get_parameter(name),
                                             parent_mod->add_parameter(name, input->get_shape()));
                   });
    return parent_mod->insert_instructions(parent_mod->end(), pm, param_map);
}

// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i)
{
    using type_t                                      = shape::type_t;
    const auto& name                                  = i.name();
    const auto result_type                            = i.get_shape().type();
    const std::initializer_list<type_t> allowed_types = {type_t::float_type,
                                                         type_t::half_type,
Umang Yadav's avatar
Umang Yadav committed
296
                                                         type_t::fp8e4m3fnuz_type,
297
298
299
300
301
                                                         type_t::int8_type,
                                                         type_t::int32_type,
                                                         type_t::bool_type};
    // Preliminary type check.
    if(not contains(allowed_types, result_type))
302
303
304
    {
        return false;
    }
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
    const std::initializer_list<std::string> no_bool_ops  = {
        "convolution",
        "quant_convolution",
        "dot",
        "quant_dot",
        "add",
        "clip",
        "relu",
        "sub",
        "mul",
        "div",
        "pow",
        "where",
        "quantizelinear",
        "dequantizelinear",
        "abs",
        "neg",
    };
    const std::initializer_list<std::string> fp_only_ops = {
        "ceil",
        "erf",
        "exp",
        "floor",
        "log",
        "recip",
        "rsqrt",
        "sigmoid",
        "softmax",
        "tanh",
    };
Umang Yadav's avatar
Umang Yadav committed
336
    bool is_float = contains({type_t::float_type, type_t::half_type, type_t::fp8e4m3fnuz_type}, result_type);
337
338
339
340
341
342
343
344
345
346
    if(contains(any_type_ops, name))
        return true;
    if(result_type != type_t::bool_type and contains(no_bool_ops, name))
        return true;
    if(is_float and contains(fp_only_ops, name))
        return true;
    // Only conversions between floating types are known to be unambigiously
    // supported.
    if(is_float and name == "convert")
    {
Umang Yadav's avatar
Umang Yadav committed
347
348
349
350
        if(result_type == shape::fp8e4m3fnuz_type)
        {
            return false;
        } // else
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
            return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
        });
    }
    return false;
}

MIGRAPHX_PRED_MATCHER(mlir_pointwise, instruction_ref ins)
{
    if(ins->name() != "pointwise")
        return false;
    auto* pm = ins->module_inputs().front();
    return std::all_of(pm->begin(), pm->end(), [&](const auto& i) {
        return is_pointwise_op_supported_by_mlir(i);
    });
}

struct find_mlir_fused_ops
{
    mlir_mode conv_mode = mlir_mode::none;
    mlir_mode dot_mode  = mlir_mode::none;
    auto matcher() const
    {
        auto dot_or_conv = match::skip(match::name("contiguous"))(
            match::any_of(is_mlir_dot(dot_mode), is_mlir_conv(conv_mode)).bind("gemm_based_op"));
        return mlir_pointwise()(match::any_of[match::inputs()](dot_or_conv.bind("x")));
    }
378

Paul Fultz II's avatar
Paul Fultz II committed
379
380
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
381
382
383
384
385
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
Paul Fultz II's avatar
Paul Fultz II committed
386
387
388
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
389
390
391
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(
            mm, gemm_based_op->inputs(), gemm_based_op->get_operator());
        mm->add_return(fold_pointwise_mod(ins, mm, {{x_ins, anchor_op}}));
Paul Fultz II's avatar
Paul Fultz II committed
392
393
394
395
396

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
397
                     [&](auto input) { return input != gemm_based_op; });
398
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
399
        mpm.get_module().replace_instruction(
400
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
401
402
    }
};
403

404
template <auto Matcher>
405
struct find_mlir_standalone_op
406
{
407
408
    mlir_mode mode = mlir_mode::none;
    auto matcher() const { return Matcher(mode); }
409

410
411
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
412
        auto gemm_based_op = r.result;
Umang Yadav's avatar
Umang Yadav committed
413
        // enable only for fp32/fp16/i8/fp8 types
414
        if(std::any_of(gemm_based_op->inputs().begin(), gemm_based_op->inputs().end(), [&](auto i) {
415
               return not contains(
Umang Yadav's avatar
Umang Yadav committed
416
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type, shape::type_t::fp8e4m3fnuz_type},
417
418
419
420
                   i->get_shape().type());
           }))
            return;
        static size_t counter = 0;
421
        module_ref mm =
422
            mpm.create_module("mlir_" + gemm_based_op->name() + std::to_string(counter++));
423
        mm->set_bypass();
424
425
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(
            mm, gemm_based_op->inputs(), gemm_based_op->get_operator());
426
427
        mm->add_return({anchor_op});
        mpm.get_module().replace_instruction(
428
            gemm_based_op, mlir_op{gemm_based_op->get_operator()}, top_inputs, {mm});
429
430
431
    }
};

432
433
using find_mlir_standalone_convolution_op = find_mlir_standalone_op<&is_mlir_conv>;
using find_mlir_standalone_dot_op         = find_mlir_standalone_op<&is_mlir_dot>;
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
struct find_mlir_standalone_attention_op
{
    auto matcher() const
    {
        return match::name("gpu::pre_gemm_softmax_gemm").bind("gemm_softmax_gemm");
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        static size_t counter  = 0;
        module_ref mm          = mpm.create_module("mlir_" + std::to_string(counter++));
        auto gemm_softmax_gemm = r.instructions["gemm_softmax_gemm"];
        std::vector<instruction_ref> inputs;
        mm->set_bypass();
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        auto gemm0_inputs = gemm_softmax_gemm->inputs();
        gemm0_inputs.pop_back();
        auto [gemm0, top_gemm0_inputs] =
            fuse_input_ops_and_gemm_based_op(mm, gemm0_inputs, make_op("dot"));
        inputs.insert(inputs.begin(), top_gemm0_inputs.begin(), top_gemm0_inputs.end());
        // handle scale
        auto v = gemm_softmax_gemm->get_operator().to_value();
        assert(v.contains("scale"));
        auto scale     = v.at("scale").to<float>();
        auto scale_lit = mm->add_literal(literal{shape{gemm0->get_shape().type()}, {scale}});
        instruction_ref scale_lit_mbcast = mm->add_instruction(
            make_op("multibroadcast", {{"out_lens", gemm0->get_shape().lens()}}), scale_lit);
        auto scaled_gemm0 = mm->add_instruction(make_op("mul"), gemm0, scale_lit_mbcast);

        auto softmax = mm->add_instruction(
            make_op("softmax", {{"axis", gemm0->get_shape().lens().size() - 1}}), scaled_gemm0);
        auto [old_upper_v, upper_v_op_stream] =
            get_fusable_input_op_stream(gemm_softmax_gemm->inputs()[2]);
        instruction_ref new_upper_v = mm->add_parameter("z", old_upper_v->get_shape());
        for(const auto& op : reverse(upper_v_op_stream))
        {
            new_upper_v = mm->add_instruction(op, {new_upper_v});
        }
        inputs.push_back(old_upper_v);
        auto gemm1                 = mm->add_instruction(make_op("dot"), {softmax, new_upper_v});
        ins_map[gemm_softmax_gemm] = gemm1;
        auto ins_to_replace        = gemm1;
        auto ins_to_be_replaced    = gemm_softmax_gemm;
        if(r.instructions.find("trailing_pm") != r.instructions.end())
        {
            ins_to_replace = fold_pointwise_mod(r.instructions["trailing_pm"], mm, ins_map)[0];
            std::copy_if(r.instructions["trailing_pm"]->inputs().begin(),
                         r.instructions["trailing_pm"]->inputs().end(),
                         std::back_inserter(inputs),
                         [&](auto input) { return input != gemm_softmax_gemm; });
            ins_to_be_replaced = r.instructions["trailing_pm"];
        }
        mm->add_return({ins_to_replace});
        mpm.get_module().replace_instruction(
            ins_to_be_replaced, mlir_op{gemm1->get_operator()}, inputs, {mm});
    }
};

struct find_mlir_attention_fused_ops : public find_mlir_standalone_attention_op
495
{
496
497
498
499
500
501
502
503
504
    auto matcher() const
    {
        auto standalone_matcher = find_mlir_standalone_attention_op::matcher();
        return mlir_pointwise()(
            match::any_of[match::inputs()](standalone_matcher).bind("trailing_pm"));
        ;
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
505
506
} // namespace

507
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
508
509
510
511

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
512
513
    const auto& device_name = ctx == nullptr ? "" : ctx->get_current_device().get_gfx_name();
    const bool is_navi      = starts_with(device_name, "gfx110");
514

515
516
517
518
519
520
521
    auto get_mode = [&](std::string_view option, mlir_mode m1, mlir_mode m2 = mlir_mode::fast) {
        if(is_requested(option))
            return mlir_mode::all;
        if(is_navi)
            return mlir_mode::all;
        return std::max(m1, m2);
    };
522

523
524
525
    mlir_mode mode =
        (enabled(MIGRAPHX_ENABLE_EXTRA_MLIR{}) or enable_extra) ? mlir_mode::fast : mlir_mode::none;

526
527
528
529
530
531
532
    // Attention offloads; default disabled
    if(mlir_attention_enabled())
    {
        match::find_matches(mpm, find_mlir_attention_fused_ops{});
        match::find_matches(mpm, find_mlir_standalone_attention_op{});
    }

533
534
535
536
537
538
    match::find_matches(mpm,
                        find_mlir_fused_ops{.conv_mode = get_mode("fused", mlir_mode::fast),
                                            .dot_mode  = get_mode("fused", mode)});

    match::find_matches(
        mpm,
Umang Yadav's avatar
Umang Yadav committed
539
        find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::all)},
540
        find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
Paul Fultz II's avatar
Paul Fultz II committed
541
542
543
544
545
546
547
548
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx