lowering.cpp 29.7 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
53
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
54

Paul's avatar
Paul committed
55
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
56
    {
57
58
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
59
60
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
61
62
63
64
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
65

66
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
67
68
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
69
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
70

71
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
72
73
74
75
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
76
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
77
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
78
79
80
81
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
82
83
                        });
                });
84
85
        }

86
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
87
        {
88
89
90
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
91
                    par_dfor(num_batch, num_channels, image_height, image_width)(
92
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
93
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
94
95
96
97
98
99
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
100
        }
101
102
103
104
105

        return output;
    }
};

Khalique's avatar
Khalique committed
106
struct cpu_lrn
Khalique's avatar
Khalique committed
107
{
Khalique's avatar
Khalique committed
108
    op::lrn op;
Khalique's avatar
Khalique committed
109

Khalique's avatar
Khalique committed
110
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
111
112
113
114
115
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
116
117
118
119
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Khalique's avatar
Khalique committed
120
            float alphaoverarea = op.alpha / op.size;
Khalique's avatar
Khalique committed
121
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
122

123
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
124
                float scale = 0;
Khalique's avatar
Khalique committed
125
126
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
127
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
128
129
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
130
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
131
132
133
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
134
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Paul's avatar
Paul committed
143
144
struct cpu_convolution
{
145
    op::convolution op;
Paul's avatar
Paul committed
146
147

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
148
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
149
150
151
152
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
153
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
154
155
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
156

Khalique's avatar
Khalique committed
157
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
158
159
160
161
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
162

Paul's avatar
Paul committed
163
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
164
165
166
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
167
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Khalique's avatar
Khalique committed
168
169
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
Khalique's avatar
Khalique committed
170
                    const int group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
171
172
173

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Khalique's avatar
Khalique committed
174
175
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
Khalique's avatar
Khalique committed
176
                        const int in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
177
178
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
179
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
180
181
182
183
184
185
186
187
188
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
189
190
struct cpu_im2col
{
191
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
192

Scott Thornton's avatar
Scott Thornton committed
193
194
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
195

wsttiger's avatar
wsttiger committed
196
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
197
    {
Scott Thornton's avatar
Scott Thornton committed
198
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
199
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
200
201
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
202
203
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
204
205
206
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
207
208
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
209
210
211
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
212
213
            int kdiv2_h;
            int kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
214
215
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
216
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
217
218
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
219
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
220
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
221
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
222
223
224
225
226
227
228
229
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
230
231
232
233
234
235
236
237
238
239
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
240
241
                }
            }
Scott Thornton's avatar
Scott Thornton committed
242
        });
Scott Thornton's avatar
Scott Thornton committed
243
244
245
246
        return result;
    }
};

Paul's avatar
Paul committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
274
    op::pooling op;
Paul's avatar
Paul committed
275
276

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
277
278
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
279
280
281
282
283
284
285
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
286
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
287
288
289
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
322
    op::contiguous op;
Paul's avatar
Paul committed
323
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
324
325
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
326
    {
Paul's avatar
Paul committed
327
        return op.compute(output_shape, std::move(args));
Paul's avatar
Paul committed
328
329
330
    }
};

Khalique's avatar
Khalique committed
331
struct cpu_pad
332
{
Khalique's avatar
Khalique committed
333
334
    op::pad op;
    std::string name() const { return "cpu::contiguous"; }
335
336
337
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
338
        assert(output_shape.standard());
339
        argument result{output_shape};
Khalique's avatar
Khalique committed
340
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
341
342

        visit_all(result, args[0])([&](auto output, auto input) {
343
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
344
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
345
346
347
348
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
349
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
350
            });
Khalique's avatar
Khalique committed
351
352
        });

353
354
355
356
357
358
359
360
361
362
363
        return result;
    }
};

struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Paul's avatar
Paul committed
364
        return op.compute(output_shape, std::move(args));
365
366
367
    }
};

Paul's avatar
Paul committed
368
369
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
370
371
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
372
373
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
374
375
376
377
378
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
379
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
380
    }
Paul's avatar
Paul committed
381

Paul's avatar
Paul committed
382
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
383
384
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrics, and C is broadcastable to A * B
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
409
410
411
412
        return result;
    }
};

413
414
415
416
417
418
419
420
struct cpu_gather
{
    op::gather op;
    std::string name() const { return "cpu::gather"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
421
        return op.compute(output_shape, std::move(args));
422
423
424
    }
};

Paul's avatar
Paul committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
439
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
440
441
442
443
444
445
446
447
448
449
450
451
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
452
453
454
455
456
457
458
459
460
struct log_op
{
    std::string name() const { return "cpu::log"; }
    auto fcn() const
    {
        return [](auto x) { return std::log(x); };
    }
};

Paul's avatar
Paul committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
struct sinh_op
{
    std::string name() const { return "cpu::sinh"; }
    auto fcn() const
    {
        return [](auto x) { return std::sinh(x); };
    }
};

struct cosh_op
{
    std::string name() const { return "cpu::cosh"; }
    auto fcn() const
    {
        return [](auto x) { return std::cosh(x); };
    }
};

Paul's avatar
Paul committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
565
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
566
567
568
    }
};

Khalique's avatar
Khalique committed
569
570
571
572
573
574
575
576
577
578
579
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
580
581
582
583
584
585
586
587
588
589
590
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
591
592
593
594
595
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
596
597
598
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        return {inputs.front().type(), inputs.front().lens()};
599
600
    }

Paul's avatar
Paul committed
601
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
602
603
604
605
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
606
607
608
609
610
611
612
                if(input.get_shape().packed())
                {
                    std::transform(input.begin(), input.end(), output.begin(), op.fcn());
                }
                else
                {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
Shucai Xiao's avatar
Shucai Xiao committed
613
                        output(idx.begin(), idx.end()) = op.fcn()(input(idx.begin(), idx.end()));
614
615
                    });
                }
Paul's avatar
Paul committed
616
617
            });
        });
618

Paul's avatar
Paul committed
619
620
621
622
623
624
625
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
626
627
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
661
662
663
664
665
666
struct cpu_logsoftmax
{
    op::logsoftmax op;
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
667
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
668
669
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
670
        if(axis == 0)
671
672
673
674
675
676
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
677
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
678
        }
Shucai Xiao's avatar
Shucai Xiao committed
679
680
681
682
683
684
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
685
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
686
        if(op.axis == 0)
687
688
689
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
690
        else
691
692
693
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
694
695
696
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
697
698
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
699
            shape_for_each(output_shape, [&](auto idx) {
700
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
701
702
703
704
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
705
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
706
707
708
709
710
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
711
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
712
713
714
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
715
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
716
717
718
719
720
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
721
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
722
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
723
724
725
726
727
728
729
            });
        });

        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
730
731
732
733
734
735
736
737
738
739
740
741
struct cpu_fp_conversion
{
    op::fp_conversion op;
    std::string name() const { return "cpu_fp_conversion"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        return op.compute(output_shape, std::move(args));
    }
};

Paul's avatar
Paul committed
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

Khalique's avatar
Khalique committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
struct max_op
{
    std::string name() const { return "max"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::max(x, y); };
    }
};

struct min_op
{
    std::string name() const { return "min"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::min(x, y); };
    }
};

Paul's avatar
Paul committed
796
797
798
799
800
template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
801
802
    shape compute_shape(const std::vector<shape>& inputs) const
    {
803
        // operator will generate standard output shape
Shucai Xiao's avatar
Shucai Xiao committed
804
        return {inputs.front().type(), inputs.front().lens()};
805
    }
Paul's avatar
Paul committed
806
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
846
847
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
848
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
849
        apply_map["batch_norm_inference"] =
850
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Shucai Xiao's avatar
Shucai Xiao committed
851
852
853
854
855
        apply_map["lrn"]           = extend_op<cpu_lrn, op::lrn>();
        apply_map["contiguous"]    = extend_op<cpu_contiguous, op::contiguous>();
        apply_map["pad"]           = extend_op<cpu_pad, op::pad>();
        apply_map["concat"]        = extend_op<cpu_concat, op::concat>();
        apply_map["gather"]        = extend_op<cpu_gather, op::gather>();
Shucai Xiao's avatar
Shucai Xiao committed
856
        apply_map["fp_conversion"] = extend_op<cpu_fp_conversion, op::fp_conversion>();
Shucai Xiao's avatar
Shucai Xiao committed
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
        apply_map["logsoftmax"]    = extend_op<cpu_logsoftmax, op::logsoftmax>();
        apply_map["leaky_relu"]    = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["elu"]           = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["identity"]      = simple_op<cpu_unary<identity_op>>();
        apply_map["abs"]           = simple_op<cpu_unary<abs_op>>();
        apply_map["sinh"]          = simple_op<cpu_unary<sinh_op>>();
        apply_map["cosh"]          = simple_op<cpu_unary<cosh_op>>();
        apply_map["tanh"]          = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]       = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]           = simple_op<cpu_unary<exp_op>>();
        apply_map["log"]           = simple_op<cpu_unary<log_op>>();
        apply_map["neg"]           = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]           = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]           = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]           = simple_op<cpu_unary<tan_op>>();
        apply_map["asin"]          = simple_op<cpu_unary<asin_op>>();
        apply_map["acos"]          = simple_op<cpu_unary<acos_op>>();
        apply_map["atan"]          = simple_op<cpu_unary<atan_op>>();
        apply_map["relu"]          = simple_op<cpu_unary<relu_op>>();
        apply_map["add"]           = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]           = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]           = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]           = simple_op<cpu_binary<div_op>>();
        apply_map["max"]           = simple_op<cpu_binary<max_op>>();
        apply_map["min"]           = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
882
883
884
885
886
887
888
889
890

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
891
            if(it->name() == "pooling")
Paul's avatar
Paul committed
892
893
894
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
895
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
896
            {
Paul's avatar
Paul committed
897
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
898
899
900
901
902
903
904
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
905
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
906
907
908
909
910
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
911
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
912
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
913
914
915
916
    }

    void apply_pooling(instruction_ref ins)
    {
917
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
918
        if(op.mode == "max")
Paul's avatar
Paul committed
919
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
920
        else if(op.mode == "average")
Paul's avatar
Paul committed
921
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
922
923
924
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
925
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
926
927

} // namespace cpu
Paul's avatar
Paul committed
928
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
929
} // namespace migraphx