common.cpp 7.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
#include <migraphx/common.hpp>
#include <migraphx/module.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
30
#include <migraphx/ranges.hpp>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// Example:
// s0 = (3,2,4,5) and s1 = (2,1,1)
//
// In this case we need to broadcast (:,1,1) portion of
// s1 plus broadcast the 1st dimension of s1
// giving output_lens = (3,2,4,5)
//
// Another example:
// s0 = (3,2,1,5) and s1 = (2,7,5)
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
47
//
48
49
50
51
52
53
54
55
56
57
58
59
60
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                  std::vector<std::size_t> s1)
{
    if(s0 == s1)
        return s0;
    if(s0.size() > s1.size())
        s0.swap(s1);
    std::vector<std::size_t> out_lens(s1);
    auto offset = s1.size() - s0.size();
    std::transform(
        s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
            if(a != b and a != 1 and b != 1)
            {
61
62
                MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + migraphx::to_string_range(s0) +
                               "} and {" + migraphx::to_string_range(s1) + "} mismatch!");
63
64
65
66
67
68
            }
            return std::max(a, b);
        });
    return out_lens;
}

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1)
{
    // change both shapes to dynamic_dimension representation
    s0 = s0.to_dynamic();
    s1 = s1.to_dynamic();
    if(s0.ndim() > s1.ndim())
    {
        std::swap(s0, s1);
    }
    auto offset = s1.ndim() - s0.ndim();
    std::vector<shape::dynamic_dimension> out_dims(s1.dyn_dims());
    std::transform(
        s0.dyn_dims().cbegin(),
        s0.dyn_dims().cend(),
        s1.dyn_dims().cbegin() + offset,
        out_dims.begin() + offset,
        [&](auto a, auto b) {
            if(a == b)
            {
                return a;
            }
90
            else if(a == 1 or b == 1)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            {
                // setting opt to 0, may need to be changed
                return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max), 0};
            }
            else
            {
                MIGRAPHX_THROW("COMPUTE_BROADCASTED_DYN_DIMS: dynamic shapes {" +
                               migraphx::to_string_range(s0.dyn_dims()) + "} and {" +
                               migraphx::to_string_range(s1.dyn_dims()) + "} mismatch!");
            }
        });
    return out_dims;
}

// Compute the common (broadcasted) dimensions of a list of fixed shapes
106
107
108
std::vector<std::size_t> compute_common_lens(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
109
110
    assert(
        std::none_of(shapes.cbegin(), shapes.cend(), [](auto shape) { return shape.dynamic(); }));
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    return transform_accumulate(shapes.begin() + 1,
                                shapes.end(),
                                shapes.front().lens(),
                                &compute_broadcasted_lens,
                                [](auto s) { return s.lens(); });
}

shape::type_t compute_common_type(shape::type_t t1, shape::type_t t2)
{
    if(t1 == t2)
        return t1;
    shape::type_t result;
    shape::visit(t1, [&](auto x) {
        shape::visit(t2, [&](auto y) {
            // Workaround broken warning on gcc 5
            (void)x;
            (void)y;
            using type = std::common_type_t<decltype(x()), decltype(y())>;
            result     = shape::get_type<type>{};
        });
    });
    return result;
}

shape::type_t compute_common_types(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
    return transform_accumulate(
        shapes.begin() + 1, shapes.end(), shapes.front().type(), &compute_common_type, [&](auto s) {
            return s.type();
        });
}

shape common_shape(const std::vector<shape>& shapes)
{
    if(shapes.empty())
        return {};
    return {compute_common_types(shapes), compute_common_lens(shapes)};
}

instruction_ref insert_common_op(module& m,
                                 instruction_ref ins,
                                 const operation& op,
                                 std::vector<instruction_ref> inputs)
{
156
157
158
159
160
    if(std::any_of(
           inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
    {
        // currently only handles the binary case
        if(inputs.size() != 2)
161
        {
162
163
            MIGRAPHX_THROW("INSERT_COMMON_OP: not handled; " + migraphx::to_string(inputs.size()) +
                           "inputs, only handle two inputs if any are dynamic shape");
164
        }
165
166
167
168
169
170
171

        auto c_type = compute_common_types(to_shapes(inputs));
        auto c_dyn_dims =
            compute_broadcasted_dyn_dims(inputs[0]->get_shape(), inputs[1]->get_shape());

        // following should work for a static or dynamic shape
        if(inputs[0]->get_shape().dyn_dims() != c_dyn_dims)
172
        {
173
174
175
176
177
            inputs[0] = m.insert_instruction(
                ins,
                make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
                inputs[0],
                inputs[1]);
178
        }
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        if(inputs[1]->get_shape().dyn_dims() != c_dyn_dims)
        {
            inputs[1] = m.insert_instruction(
                ins,
                make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
                inputs[1],
                inputs[0]);
        }
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().type() != c_type)
            {
                input =
                    m.insert_instruction(ins, make_op("convert", {{"target_type", c_type}}), input);
            }
            return input;
        });
    }
    else
    {
        auto common = common_shape(to_shapes(inputs));
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().lens() != common.lens())
            {
                input = m.insert_instruction(
                    ins, make_op("multibroadcast", {{"out_lens", common.lens()}}), input);
            }
            if(input->get_shape().type() != common.type())
            {
                input = m.insert_instruction(
                    ins, make_op("convert", {{"target_type", common.type()}}), input);
            }
            return input;
        });
    }
213
214
215
216
217
218
219
220
221
222
    return m.insert_instruction(ins, op, inputs);
}

instruction_ref add_common_op(module& m, const operation& op, std::vector<instruction_ref> inputs)
{
    return insert_common_op(m, m.end(), op, std::move(inputs));
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx