Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
ab7cc6b1
"vscode:/vscode.git/clone" did not exist on "f321b13a032ee287d4ea1139c14c25eed55328d3"
Unverified
Commit
ab7cc6b1
authored
Mar 28, 2024
by
Or Sharir
Committed by
GitHub
Mar 28, 2024
Browse files
Fix SuperGlue's ReCoRD task following regression in v0.4 refactoring (#1647)
parent
0dffdbb4
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
20 additions
and
3 deletions
+20
-3
lm_eval/tasks/super_glue/record/default.yaml
lm_eval/tasks/super_glue/record/default.yaml
+4
-3
lm_eval/tasks/super_glue/record/util.py
lm_eval/tasks/super_glue/record/util.py
+16
-0
No files found.
lm_eval/tasks/super_glue/record/default.yaml
View file @
ab7cc6b1
...
...
@@ -7,8 +7,9 @@ output_type: multiple_choice
training_split
:
train
validation_split
:
validation
doc_to_text
:
!function
util.doc_to_text
doc_to_target
:
"
{{answers}}"
doc_to_choice
:
"
{{entities}}"
doc_to_target
:
!function
util.doc_to_target
doc_to_choice
:
!function
util.doc_to_choice
process_docs
:
!function
util.process_docs
process_results
:
!function
util.process_results
metric_list
:
-
metric
:
f1
...
...
@@ -17,4 +18,4 @@ metric_list:
higher_is_better
:
True
aggregation
:
mean
metadata
:
version
:
1
.0
version
:
2
.0
lm_eval/tasks/super_glue/record/util.py
View file @
ab7cc6b1
import
datasets
import
numpy
as
np
import
transformers.data.metrics.squad_metrics
as
squad_metrics
...
...
@@ -21,6 +22,21 @@ def doc_to_target(doc):
return
format_answer
(
query
=
doc
[
"query"
],
entity
=
doc
[
"answers"
][
0
])
def
doc_to_choice
(
doc
):
return
[
format_answer
(
query
=
doc
[
"query"
],
entity
=
ans
)
for
ans
in
doc
[
"entities"
]]
def
process_docs
(
dataset
:
datasets
.
Dataset
):
def
_process_doc
(
doc
):
return
{
"passage"
:
doc
[
"passage"
],
"query"
:
doc
[
"query"
],
"entities"
:
sorted
(
list
(
set
(
doc
[
"entities"
]))),
"answers"
:
sorted
(
list
(
set
(
doc
[
"answers"
]))),
}
return
dataset
.
map
(
_process_doc
)
def
process_results
(
doc
,
results
):
# ReCoRD's evaluation is actually deceptively simple:
# - Pick the maximum likelihood prediction entity
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment