Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
ab7cc6b1
Unverified
Commit
ab7cc6b1
authored
Mar 28, 2024
by
Or Sharir
Committed by
GitHub
Mar 28, 2024
Browse files
Fix SuperGlue's ReCoRD task following regression in v0.4 refactoring (#1647)
parent
0dffdbb4
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
20 additions
and
3 deletions
+20
-3
lm_eval/tasks/super_glue/record/default.yaml
lm_eval/tasks/super_glue/record/default.yaml
+4
-3
lm_eval/tasks/super_glue/record/util.py
lm_eval/tasks/super_glue/record/util.py
+16
-0
No files found.
lm_eval/tasks/super_glue/record/default.yaml
View file @
ab7cc6b1
...
@@ -7,8 +7,9 @@ output_type: multiple_choice
...
@@ -7,8 +7,9 @@ output_type: multiple_choice
training_split
:
train
training_split
:
train
validation_split
:
validation
validation_split
:
validation
doc_to_text
:
!function
util.doc_to_text
doc_to_text
:
!function
util.doc_to_text
doc_to_target
:
"
{{answers}}"
doc_to_target
:
!function
util.doc_to_target
doc_to_choice
:
"
{{entities}}"
doc_to_choice
:
!function
util.doc_to_choice
process_docs
:
!function
util.process_docs
process_results
:
!function
util.process_results
process_results
:
!function
util.process_results
metric_list
:
metric_list
:
-
metric
:
f1
-
metric
:
f1
...
@@ -17,4 +18,4 @@ metric_list:
...
@@ -17,4 +18,4 @@ metric_list:
higher_is_better
:
True
higher_is_better
:
True
aggregation
:
mean
aggregation
:
mean
metadata
:
metadata
:
version
:
1
.0
version
:
2
.0
lm_eval/tasks/super_glue/record/util.py
View file @
ab7cc6b1
import
datasets
import
numpy
as
np
import
numpy
as
np
import
transformers.data.metrics.squad_metrics
as
squad_metrics
import
transformers.data.metrics.squad_metrics
as
squad_metrics
...
@@ -21,6 +22,21 @@ def doc_to_target(doc):
...
@@ -21,6 +22,21 @@ def doc_to_target(doc):
return
format_answer
(
query
=
doc
[
"query"
],
entity
=
doc
[
"answers"
][
0
])
return
format_answer
(
query
=
doc
[
"query"
],
entity
=
doc
[
"answers"
][
0
])
def
doc_to_choice
(
doc
):
return
[
format_answer
(
query
=
doc
[
"query"
],
entity
=
ans
)
for
ans
in
doc
[
"entities"
]]
def
process_docs
(
dataset
:
datasets
.
Dataset
):
def
_process_doc
(
doc
):
return
{
"passage"
:
doc
[
"passage"
],
"query"
:
doc
[
"query"
],
"entities"
:
sorted
(
list
(
set
(
doc
[
"entities"
]))),
"answers"
:
sorted
(
list
(
set
(
doc
[
"answers"
]))),
}
return
dataset
.
map
(
_process_doc
)
def
process_results
(
doc
,
results
):
def
process_results
(
doc
,
results
):
# ReCoRD's evaluation is actually deceptively simple:
# ReCoRD's evaluation is actually deceptively simple:
# - Pick the maximum likelihood prediction entity
# - Pick the maximum likelihood prediction entity
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment