deepsparse.py 5.37 KB
Newer Older
mgoin's avatar
mgoin committed
1
2
3
4
from typing import List, Optional, Tuple, Union
from tqdm import tqdm
import random

Michael Goin's avatar
Michael Goin committed
5
import deepsparse
mgoin's avatar
mgoin committed
6
7

from lm_eval import utils
Michael Goin's avatar
Michael Goin committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from lm_eval.base import BaseLM


class DeepSparseLM(BaseLM):
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained: str,
        tokenizer: Optional[str] = None,
        batch_size: Optional[Union[int, str]] = 1,
        max_gen_toks: Optional[int] = 256,
        max_length: Optional[int] = None,
        trust_remote_code: Optional[bool] = False,
    ):
        super().__init__()

        # Initialize new model and tokenizer instances
        self.model = deepsparse.Pipeline.create(
            task="text-generation",
            model_path=pretrained,
mgoin's avatar
mgoin committed
29
            sequence_length=max_length or self._DEFAULT_MAX_LENGTH,
mgoin's avatar
Update  
mgoin committed
30
            prompt_sequence_length=16,
Michael Goin's avatar
Michael Goin committed
31
32
33
34
35
36
37
38
39
40
41
42
            trust_remote_code=trust_remote_code,
            batch_size=batch_size,
        )
        self.tokenizer = tokenizer if tokenizer else self.model.tokenizer

        self.vocab_size = self.tokenizer.vocab_size

        self._batch_size = int(batch_size)
        self._max_length = max_length
        self._max_gen_toks = max_gen_toks

    @property
mgoin's avatar
mgoin committed
43
44
45
46
47
    def eot_token(self) -> str:
        return self.tokenizer.eos_token

    @property
    def eot_token_id(self) -> int:
Michael Goin's avatar
Michael Goin committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        # seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        # for attr in seqlen_config_attrs:
        #     if hasattr(self.model.config, attr):
        #         return getattr(self.model.config, attr)
        # if hasattr(self.tokenizer, "model_max_length"):
        #     if self.tokenizer.model_max_length == 1000000000000000019884624838656:
        #         return self._DEFAULT_MAX_LENGTH
        #     return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

    @property
    def batch_size(self):
        return self._batch_size

    @property
    def device(self):
        return "cpu"

    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def greedy_until(
        self, requests: List[Tuple[str, Union[List[str], str]]]
    ) -> List[str]:
        def _collate(x):
            tokens = self.tok_encode(x[0])
            return len(tokens), x[0]

        results = []
        reorder = utils.Reorderer(requests, _collate)

        # adaptive_batch_size = None
        # if self.batch_size == "auto":
        #     # using rolling window with maximum context
        #     print("Passed argument batch_size = auto. Detecting largest batch size")
        #     batch_size = self._detect_batch_size()
        #     print(f"Determined Largest batch size: {batch_size}")
        #     adaptive_batch_size = batch_size

        for chunk in utils.chunks(
            tqdm(reorder.get_reordered(), disable=False),
            self.batch_size,
        ):
            context = [c[0] for c in chunk]
            request_args = chunk[0][1]
            stop = request_args.get("until", None)
            stop_sequences = stop if isinstance(stop, list) else [stop]
            max_generation_length = request_args.get("max_length", None)

            assert (
                isinstance(max_generation_length, int) or max_generation_length is None
            )
            assert isinstance(stop_sequences, list) or stop_sequences is None

            # TODO: Find a better way to handle stop sequences for 0-shot.
            if stop_sequences is None:
                until = [self.eot_token]
            else:
                until = stop_sequences + [self.eot_token]

            if max_generation_length is None:
                max_tokens = self.max_gen_toks
            else:
                max_tokens = max_generation_length

            # token_context = self.tok_encode_batch(context)

            responses = self.model(
                sequences=context,
                max_new_tokens=max_tokens,
                stop=until,
                do_sample=False,
            )

mgoin's avatar
mgoin committed
135
136
            responses = responses if type(responses) is list else [responses]

Michael Goin's avatar
Michael Goin committed
137
138
139
140
141
142
143
144
145
146
147
            for response in responses:
                response = response.generations[0].text
                # Ensure the generated responses do not contain the stop sequences.
                for term in until:
                    response = response.split(term)[0]
                # partial caching
                self.cache_hook.add_partial("greedy_until", (context, until), response)
                results.append(response)

        return reorder.get_original(results)

mgoin's avatar
mgoin committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    def loglikelihood(self, requests):
        raise NotImplementedError()

    def loglikelihood_rolling(self, requests):
        raise NotImplementedError()

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        raise NotImplementedError("No support for logits.")

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
        # Isn't used because we override greedy_until
        raise NotImplementedError()