deepsparse.py 4.63 KB
Newer Older
Michael Goin's avatar
Michael Goin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import deepsparse
from typing import Optional, Union
from lm_eval.base import BaseLM


class DeepSparseLM(BaseLM):

    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained: str,
        tokenizer: Optional[str] = None,
        batch_size: Optional[Union[int, str]] = 1,
        max_gen_toks: Optional[int] = 256,
        max_length: Optional[int] = None,
        trust_remote_code: Optional[bool] = False,
    ):
        super().__init__()

        # Initialize new model and tokenizer instances
        self.model = deepsparse.Pipeline.create(
            task="text-generation",
            model_path=pretrained,
            sequence_length=max_length or _DEFAULT_MAX_LENGTH,
            trust_remote_code=trust_remote_code,
            batch_size=batch_size,
        )
        self.tokenizer = tokenizer if tokenizer else self.model.tokenizer

        self.vocab_size = self.tokenizer.vocab_size

        self._batch_size = int(batch_size)
        self._max_length = max_length
        self._max_gen_toks = max_gen_toks

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        # seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        # for attr in seqlen_config_attrs:
        #     if hasattr(self.model.config, attr):
        #         return getattr(self.model.config, attr)
        # if hasattr(self.tokenizer, "model_max_length"):
        #     if self.tokenizer.model_max_length == 1000000000000000019884624838656:
        #         return self._DEFAULT_MAX_LENGTH
        #     return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

    @property
    def batch_size(self):
        return self._batch_size

    @property
    def device(self):
        return "cpu"

    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def greedy_until(
        self, requests: List[Tuple[str, Union[List[str], str]]]
    ) -> List[str]:
        def _collate(x):
            tokens = self.tok_encode(x[0])
            return len(tokens), x[0]

        results = []
        reorder = utils.Reorderer(requests, _collate)

        # adaptive_batch_size = None
        # if self.batch_size == "auto":
        #     # using rolling window with maximum context
        #     print("Passed argument batch_size = auto. Detecting largest batch size")
        #     batch_size = self._detect_batch_size()
        #     print(f"Determined Largest batch size: {batch_size}")
        #     adaptive_batch_size = batch_size

        for chunk in utils.chunks(
            tqdm(reorder.get_reordered(), disable=False),
            self.batch_size,
        ):
            context = [c[0] for c in chunk]
            request_args = chunk[0][1]
            stop = request_args.get("until", None)
            stop_sequences = stop if isinstance(stop, list) else [stop]
            max_generation_length = request_args.get("max_length", None)

            assert (
                isinstance(max_generation_length, int) or max_generation_length is None
            )
            assert isinstance(stop_sequences, list) or stop_sequences is None

            # TODO: Find a better way to handle stop sequences for 0-shot.
            if stop_sequences is None:
                until = [self.eot_token]
            else:
                until = stop_sequences + [self.eot_token]

            if max_generation_length is None:
                max_tokens = self.max_gen_toks
            else:
                max_tokens = max_generation_length

            # token_context = self.tok_encode_batch(context)

            responses = self.model(
                sequences=context,
                max_new_tokens=max_tokens,
                stop=until,
                do_sample=False,
            )

            for response in responses:
                response = response.generations[0].text
                # Ensure the generated responses do not contain the stop sequences.
                for term in until:
                    response = response.split(term)[0]
                # partial caching
                self.cache_hook.add_partial("greedy_until", (context, until), response)
                results.append(response)

        return reorder.get_original(results)