openai_completions.py 18.8 KB
Newer Older
1
import copy
Jason Phang's avatar
gpt3  
Jason Phang committed
2
import os
lintangsutawika's avatar
lintangsutawika committed
3
import time
lintangsutawika's avatar
update  
lintangsutawika committed
4
from collections import defaultdict
5
6
7
from importlib.util import find_spec
from typing import List, Optional, Tuple

8
import transformers
Leo Gao's avatar
Leo Gao committed
9
from tqdm import tqdm
lintangsutawika's avatar
update  
lintangsutawika committed
10

lintangsutawika's avatar
lintangsutawika committed
11
from lm_eval import utils
12
13
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
Leo Gao's avatar
Leo Gao committed
14

lintangsutawika's avatar
update  
lintangsutawika committed
15

Baber Abbasi's avatar
Baber Abbasi committed
16
def get_result(response, ctxlen: int) -> Tuple[float, bool]:
lintangsutawika's avatar
lintangsutawika committed
17
18
19
20
21
22
23
24
25
26
27
28
29
    """Process results from OpenAI API response.

    :param response: dict
        OpenAI API Response
    :param ctxlen: int
        Length of context (so we can slice them away and only keep the predictions)
    :return:
        continuation_logprobs: np.array
            Log probabilities of continuation tokens
        is_greedy: bool
            whether argmax matches given continuation exactly
    """
    is_greedy = True
Baber Abbasi's avatar
Baber Abbasi committed
30
    logprobs = response.logprobs.token_logprobs
lintangsutawika's avatar
lintangsutawika committed
31
32
    continuation_logprobs = sum(logprobs[ctxlen:])

Baber Abbasi's avatar
Baber Abbasi committed
33
34
35
    for i in range(ctxlen, len(response.logprobs.token_logprobs)):
        token = response.logprobs.token_logprobs[i]
        top_tokens = response.logprobs.top_logprobs[i]
lintangsutawika's avatar
lintangsutawika committed
36
37
38
39
40
41
42
43
44
45
46
47
48
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break

    return continuation_logprobs, is_greedy


def oa_completion(**kwargs):
    """Query OpenAI API for completion.

    Retry with back-off until they respond
    """
49
    if not find_spec("openai") or not find_spec("tiktoken"):
lintangsutawika's avatar
lintangsutawika committed
50
        raise Exception(
51
52
            "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. "
            "Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`"
lintangsutawika's avatar
lintangsutawika committed
53
        )
54
55
    else:
        import openai
lintangsutawika's avatar
lintangsutawika committed
56
57
58
59

    backoff_time = 3
    while True:
        try:
60
61
            return openai.completions.create(**kwargs)
        except openai.OpenAIError:
lintangsutawika's avatar
lintangsutawika committed
62
63
64
65
66
67
68
            import traceback

            traceback.print_exc()
            time.sleep(backoff_time)
            backoff_time *= 1.5


69
@register_model("openai-completions")
lintangsutawika's avatar
lintangsutawika committed
70
71
class OpenaiCompletionsLM(LM):
    REQ_CHUNK_SIZE = 20
Baber Abbasi's avatar
Baber Abbasi committed
72
    _DEFAULT_MAX_LENGTH = 2048
lintangsutawika's avatar
lintangsutawika committed
73
74
75

    def __init__(
        self,
76
        model: str = "text-davinci-003",
lintangsutawika's avatar
lintangsutawika committed
77
        truncate: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
78
        max_gen_toks: int = 256,
lintangsutawika's avatar
lintangsutawika committed
79
        batch_size: int = 1,
Baber Abbasi's avatar
Baber Abbasi committed
80
81
        seed: int = 1234,
        max_length: Optional[int] = None,
lintangsutawika's avatar
lintangsutawika committed
82
83
84
85
86
87
88
89
90
    ) -> None:
        """

        :param engine: str
            OpenAI API engine (e.g. davinci)
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
        super().__init__()
Baber Abbasi's avatar
Baber Abbasi committed
91
        self.seed = seed
lintangsutawika's avatar
lintangsutawika committed
92
        try:
93
94
            import openai  # noqa: E401
            import tiktoken
lintangsutawika's avatar
lintangsutawika committed
95
96
97
98
99
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
    please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
            )
Baber Abbasi's avatar
Baber Abbasi committed
100
        self.model = model
101
        self.tokenizer = tiktoken.encoding_for_model(self.model)
lintangsutawika's avatar
lintangsutawika committed
102
103
104
        self.vocab_size = self.tokenizer.n_vocab
        self.truncate = truncate
        self.end_of_text_token_id = self.tokenizer.eot_token
Baber Abbasi's avatar
Baber Abbasi committed
105
106
        self._max_gen_toks = max_gen_toks
        self._max_length = max_length
lintangsutawika's avatar
lintangsutawika committed
107

108
        # Read from environment variable OPENAI_API_KEY
Baber Abbasi's avatar
Baber Abbasi committed
109
        openai.api_key = os.environ["OPENAI_API_KEY"]
lintangsutawika's avatar
lintangsutawika committed
110
111
112
113
114
115
116

    @property
    def eot_token_id(self):
        return self.end_of_text_token_id

    @property
    def max_length(self) -> int:
Baber Abbasi's avatar
Baber Abbasi committed
117
118
119
120
        if self._max_length:
            return self._max_length
        else:
            return self._DEFAULT_MAX_LENGTH
lintangsutawika's avatar
lintangsutawika committed
121
122
123

    @property
    def max_gen_toks(self) -> int:
Baber Abbasi's avatar
Baber Abbasi committed
124
        return self._max_gen_toks
lintangsutawika's avatar
lintangsutawika committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def tok_encode(self, string: str) -> List[int]:
        return self.tokenizer.encode(string)

    def tok_decode(self, tokens: List[int]) -> str:
        return self.tokenizer.decode(tokens)

    def _encode_pair(
        self, context: str, continuation: str
    ) -> Tuple[List[int], List[int]]:
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

    def loglikelihood(self, requests) -> List[Tuple[float, bool]]:
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
160
161
162
                context_enc, continuation_enc = (
                    [self.eot_token_id],
                    self.tok_encode(continuation),
lintangsutawika's avatar
lintangsutawika committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                )
            else:
                context_enc, continuation_enc = self._encode_pair(context, continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def _loglikelihood_tokens(
        self, requests, disable_tqdm: bool = False
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            # this doesn't efficiently handle last-token differences yet, but those are kinda annoying because
            # it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations
            # we care about, and so we need some kind of backup for when it isn't
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)

        for chunk in tqdm(
            list(utils.chunks(re_ord.get_reordered(), self.REQ_CHUNK_SIZE)),
            disable=disable_tqdm,
        ):
            inps = []
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                # max_length+1 because the API takes up to 2049 tokens, including the first context token
                inp = (context_enc + continuation_enc)[-(self.max_length + 1) :]
                # TODO: the logic is much simpler if we just look at the length of continuation tokens
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length + 1)
                )

                inps.append(inp)
                ctxlens.append(ctxlen)

            response = oa_completion(
Baber Abbasi's avatar
Baber Abbasi committed
203
                model=self.model,
lintangsutawika's avatar
lintangsutawika committed
204
205
206
207
208
                prompt=inps,
                echo=True,
                max_tokens=0,
                temperature=0.0,
                logprobs=10,
Baber Abbasi's avatar
Baber Abbasi committed
209
                seed=self.seed,
lintangsutawika's avatar
lintangsutawika committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
            )

            for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
                response.choices, ctxlens, chunk
            ):
                answer = get_result(resp, ctxlen)

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
        return re_ord.get_original(res)

    def generate_until(self, requests) -> List[str]:
        if not requests:
            return []
        res = []
        requests = [req.args for req in requests]

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer(requests, _collate)

        def sameuntil_chunks(xs, size):
            ret = []
            lastuntil = xs[0][1]
            for x in xs:
                if len(ret) >= size or x[1] != lastuntil:
                    yield ret, lastuntil
                    ret = []
                    lastuntil = x[1]
                ret.append(x)

            if ret:
                yield ret, lastuntil

        # todo: more intelligent batching for heterogeneous `until`
        for chunk, request_args in tqdm(
            list(sameuntil_chunks(re_ord.get_reordered(), self.REQ_CHUNK_SIZE))
        ):
            inps = []
            for context, _ in chunk:
                context_enc = self.tok_encode(context)
                inp = context_enc[-(self.max_length - self.max_gen_toks) :]
                inps.append(inp)

Baber Abbasi's avatar
Baber Abbasi committed
259
260
261
            until = request_args.pop("until", ["<|endoftext|>"])
            request_args.pop("do_sample", None)
            request_args["temperature"] = request_args.get("temperature", 0)
lintangsutawika's avatar
lintangsutawika committed
262
263

            response = oa_completion(
264
                model=self.model,
lintangsutawika's avatar
lintangsutawika committed
265
266
267
                prompt=inps,
                max_tokens=self.max_gen_toks,
                stop=until,
Baber Abbasi's avatar
Baber Abbasi committed
268
269
                seed=self.seed,
                **request_args,
lintangsutawika's avatar
lintangsutawika committed
270
271
            )
            for resp, (context, args_) in zip(response.choices, chunk):
Baber Abbasi's avatar
Baber Abbasi committed
272
                s = getattr(resp, "text")
lintangsutawika's avatar
lintangsutawika committed
273

Baber Abbasi's avatar
Baber Abbasi committed
274
                until_ = until
lintangsutawika's avatar
lintangsutawika committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

                for term in until_:
                    if len(term) > 0:
                        s = s.split(term)[0]

                # partial caching
                self.cache_hook.add_partial(
                    "generate_until", (context, {"until": until_}), s
                )

                res.append(s)
        return re_ord.get_original(res)

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
        # Isn't used because we override generate_until
        raise NotImplementedError()

    def loglikelihood_rolling(self, requests) -> List[float]:
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
                disable_tqdm=True,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods


328
def oa_chat_completion(client, **kwargs):
329
330
331
332
    """Query OpenAI API for chat completion.

    Retry with back-off until they respond
    """
333
    if not find_spec("openai") or not find_spec("tiktoken"):
334
        raise Exception(
335
336
            "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. "
            "Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`"
337
        )
338
339
    else:
        import openai
340

341
342
343
344
    async def _get_completions(**kwargs):
        chat_completions = await client.chat.completions.create(**kwargs)
        return chat_completions

345
346
347
    backoff_time = 3
    while True:
        try:
lintangsutawika's avatar
lintangsutawika committed
348
349
            return client.chat.completions.create(**kwargs)
        except openai.OpenAIError:
350
351
352
353
354
355
356
            import traceback

            traceback.print_exc()
            time.sleep(backoff_time)
            backoff_time *= 1.5


357
@register_model("openai-chat-completions", "local-chat-completions")
358
class OpenaiChatCompletionsLM(LM):
359
    def __init__(
360
361
362
363
364
365
366
367
        self,
        model: str = "gpt-3.5-turbo",  # GPT model or Local model using HuggingFace model paths
        base_url: str = None,
        truncate: bool = False,
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
        **kwargs,
368
    ) -> None:
369
370
        """

lintangsutawika's avatar
lintangsutawika committed
371
        :param model: str
372
373
374
            Implements an OpenAI-style chat completion API for
            accessing both OpenAI OR locally-hosted models using
            HuggingFace Tokenizer
lintangsutawika's avatar
lintangsutawika committed
375
            OpenAI API model (e.g. gpt-3.5-turbo)
376
            using the **gen_kwargs passed on init
377
378
379
380
381
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
        super().__init__()
        try:
382
383
            import openai  # noqa: E401
            import tiktoken
384
385
386
387
388
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
    please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
            )
lintangsutawika's avatar
lintangsutawika committed
389
        self.model = model
390
        self.base_url = base_url
391
        self.truncate = truncate
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        # if we have a local model, use HF tokenizer over tiktoken
        if self.base_url:
            self.revision = revision
            self.trust_remote_code = trust_remote_code
            self.use_fast_tokenizer = use_fast_tokenizer

            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                self.model,
                revision=self.revision,
                trust_remote_code=self.trust_remote_code,
                use_fast_tokenizer=self.use_fast_tokenizer,
            )
            self.vocab_size = self.tokenizer.vocab
            self.end_of_text_token_id = self.tokenizer.eos_token
        else:
            self.tokenizer = tiktoken.encoding_for_model(self.model)
            self.vocab_size = self.tokenizer.n_vocab
            self.end_of_text_token_id = self.tokenizer.eot_token
411

412
        # Read from environment variable OPENAI_API_KEY
413
414
415
416
417
        # Set to EMPTY for local
        if self.base_url:
            self.client = openai.OpenAI(base_url=self.base_url)
        else:
            self.client = openai.OpenAI()  # openai.AsyncOpenAI()
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

    @property
    def eot_token_id(self):
        return self.end_of_text_token_id

    @property
    def max_length(self) -> int:
        # Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
        return 2048

    @property
    def max_gen_toks(self) -> int:
        return 256

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def tok_encode(self, string: str) -> List[int]:
        return self.tokenizer.encode(string)

    def tok_decode(self, tokens: List[int]) -> str:
        return self.tokenizer.decode(tokens)

    def _encode_pair(
lintangsutawika's avatar
update  
lintangsutawika committed
449
        self, context: str, continuation: str
450
451
452
453
454
455
456
457
458
459
    ) -> Tuple[List[int], List[int]]:
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc
460

461
    def generate_until(self, requests) -> List[str]:
lintangsutawika's avatar
update  
lintangsutawika committed
462
463
        res = defaultdict(list)
        re_ords = {}
464
465
466

        def _collate(x):
            toks = self.tok_encode(x[0])
lintangsutawika's avatar
update  
lintangsutawika committed
467
            return -len(toks), x[0]
468

lintangsutawika's avatar
update  
lintangsutawika committed
469
470
471
472
473
474
475
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
            # within each set of reqs for given kwargs, we reorder by token length, descending.
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
476
477
478
479
480
481
482
483
484
485
486
487
488
489

        def sameuntil_chunks(xs, size):
            ret = []
            lastuntil = xs[0][1]
            for x in xs:
                if len(ret) >= size or x[1] != lastuntil:
                    yield ret, lastuntil
                    ret = []
                    lastuntil = x[1]
                ret.append(x)

            if ret:
                yield ret, lastuntil

lintangsutawika's avatar
update  
lintangsutawika committed
490
491
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
        for key, re_ord in re_ords.items():
492
493
            # n needs to be 1 because messages in
            # chat completion are not batch but
494
495
            # is regarded as a single conversation.
            chunks = utils.chunks(re_ord.get_reordered(), n=1)
lintangsutawika's avatar
update  
lintangsutawika committed
496
497
498
499
            for chunk in chunks:
                contexts, all_gen_kwargs = zip(*chunk)
                inps = [{"role": "user", "content": context} for context in contexts]

500
501
502
503
                gen_kwargs = all_gen_kwargs[0]
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
504
505
                    if "do_sample" in kwargs.keys():
                        kwargs.pop("do_sample")
506
507
508
509
510
511
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
512
                                f"Expected repr(kwargs['until']) to be of type Union[str, list] but got {until}"
513
514
515
                            )
                else:
                    raise ValueError(
516
                        f"Expected repr(kwargs) to be of type repr(dict) but got {kwargs}"
517
518
519
                    )

                response = oa_chat_completion(
520
                    client=self.client, messages=inps, model=self.model, **kwargs
lintangsutawika's avatar
update  
lintangsutawika committed
521
                )
522

523
524
                for resp, (context, args_) in zip(response.choices, chunk):
                    s = resp.message.content
525

526
527
528
529
                    if until is not None:
                        for term in until:
                            if len(term) > 0:
                                s = s.split(term)[0]
lintangsutawika's avatar
update  
lintangsutawika committed
530

531
                    res[key].append(s)
lintangsutawika's avatar
update  
lintangsutawika committed
532

533
534
535
536
537
                    self.cache_hook.add_partial(
                        "generate_until", (context, {"until": until}), s
                    )
                    pbar.update(1)
            # reorder this group of results back to original unsorted form
lintangsutawika's avatar
update  
lintangsutawika committed
538
539
540
            res[key] = re_ord.get_original(res[key])

        pbar.close()
541

lintangsutawika's avatar
update  
lintangsutawika committed
542
        return grouper.get_original(res)
543
544
545
546
547
548

    def loglikelihood(self, requests):
        raise NotImplementedError("No support for logits.")

    def loglikelihood_rolling(self, requests):
        raise NotImplementedError("No support for logits.")