openai_completions.py 17.7 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
import os
lintangsutawika's avatar
lintangsutawika committed
2
import time
baberabb's avatar
baberabb committed
3
from typing import List, Tuple
lintangsutawika's avatar
update  
lintangsutawika committed
4
5
6

import copy
from collections import defaultdict
Leo Gao's avatar
Leo Gao committed
7
from tqdm import tqdm
lintangsutawika's avatar
update  
lintangsutawika committed
8

lintangsutawika's avatar
lintangsutawika committed
9
from lm_eval import utils
10
11
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
Leo Gao's avatar
Leo Gao committed
12

13
14
import asyncio
from openai import OpenAI, AsyncOpenAI
Leo Gao's avatar
Leo Gao committed
15

lintangsutawika's avatar
update  
lintangsutawika committed
16

lintangsutawika's avatar
lintangsutawika committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def get_result(response: dict, ctxlen: int) -> Tuple[float, bool]:
    """Process results from OpenAI API response.

    :param response: dict
        OpenAI API Response
    :param ctxlen: int
        Length of context (so we can slice them away and only keep the predictions)
    :return:
        continuation_logprobs: np.array
            Log probabilities of continuation tokens
        is_greedy: bool
            whether argmax matches given continuation exactly
    """
    is_greedy = True
    logprobs = response["logprobs"]["token_logprobs"]
    continuation_logprobs = sum(logprobs[ctxlen:])

    for i in range(ctxlen, len(response["logprobs"]["tokens"])):
        token = response["logprobs"]["tokens"][i]
        top_tokens = response["logprobs"]["top_logprobs"][i]
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break

    return continuation_logprobs, is_greedy


def oa_completion(**kwargs):
    """Query OpenAI API for completion.

    Retry with back-off until they respond
    """
    try:
        import openai, tiktoken  # noqa: E401
    except ModuleNotFoundError:
        raise Exception(
            "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
        )

    backoff_time = 3
    while True:
        try:
            return openai.Completion.create(**kwargs)
        except openai.error.OpenAIError:
            import traceback

            traceback.print_exc()
            time.sleep(backoff_time)
            backoff_time *= 1.5


lintangsutawika's avatar
lintangsutawika committed
70
@register_model("gooseai")
lintangsutawika's avatar
lintangsutawika committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
class OpenaiCompletionsLM(LM):
    REQ_CHUNK_SIZE = 20

    def __init__(
        self,
        engine: str = "text-davinci-003",
        truncate: bool = False,
        batch_size: int = 1,
    ) -> None:
        """

        :param engine: str
            OpenAI API engine (e.g. davinci)
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
        super().__init__()
        try:
            import openai, tiktoken  # noqa: E401
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
    please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
            )
        self.engine = engine
        self.tokenizer = tiktoken.encoding_for_model(self.engine)
        self.vocab_size = self.tokenizer.n_vocab
        self.truncate = truncate
        self.end_of_text_token_id = self.tokenizer.eot_token

        # Read from environment variable OPENAI_API_SECRET_KEY
        openai.api_key = os.environ["OPENAI_API_SECRET_KEY"]

    @property
    def eot_token_id(self):
        return self.end_of_text_token_id

    @property
    def max_length(self) -> int:
        # Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
        return 2048

    @property
    def max_gen_toks(self) -> int:
        return 256

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def tok_encode(self, string: str) -> List[int]:
        return self.tokenizer.encode(string)

    def tok_decode(self, tokens: List[int]) -> str:
        return self.tokenizer.decode(tokens)

    def _encode_pair(
        self, context: str, continuation: str
    ) -> Tuple[List[int], List[int]]:
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

    def loglikelihood(self, requests) -> List[Tuple[float, bool]]:
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
            else:
                context_enc, continuation_enc = self._encode_pair(context, continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def _loglikelihood_tokens(
        self, requests, disable_tqdm: bool = False
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            # this doesn't efficiently handle last-token differences yet, but those are kinda annoying because
            # it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations
            # we care about, and so we need some kind of backup for when it isn't
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)

        for chunk in tqdm(
            list(utils.chunks(re_ord.get_reordered(), self.REQ_CHUNK_SIZE)),
            disable=disable_tqdm,
        ):
            inps = []
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                # max_length+1 because the API takes up to 2049 tokens, including the first context token
                inp = (context_enc + continuation_enc)[-(self.max_length + 1) :]
                # TODO: the logic is much simpler if we just look at the length of continuation tokens
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length + 1)
                )

                inps.append(inp)
                ctxlens.append(ctxlen)

            response = oa_completion(
                engine=self.engine,
                prompt=inps,
                echo=True,
                max_tokens=0,
                temperature=0.0,
                logprobs=10,
            )

            for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
                response.choices, ctxlens, chunk
            ):
                answer = get_result(resp, ctxlen)

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
        return re_ord.get_original(res)

    def generate_until(self, requests) -> List[str]:
        if not requests:
            return []
        res = []
        requests = [req.args for req in requests]

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer(requests, _collate)

        def sameuntil_chunks(xs, size):
            ret = []
            lastuntil = xs[0][1]
            for x in xs:
                if len(ret) >= size or x[1] != lastuntil:
                    yield ret, lastuntil
                    ret = []
                    lastuntil = x[1]
                ret.append(x)

            if ret:
                yield ret, lastuntil

        # todo: more intelligent batching for heterogeneous `until`
        for chunk, request_args in tqdm(
            list(sameuntil_chunks(re_ord.get_reordered(), self.REQ_CHUNK_SIZE))
        ):
            inps = []
            for context, _ in chunk:
                context_enc = self.tok_encode(context)
                inp = context_enc[-(self.max_length - self.max_gen_toks) :]
                inps.append(inp)

            until = request_args.get("until", ["<|endoftext|>"])

            response = oa_completion(
                engine=self.engine,
                prompt=inps,
                max_tokens=self.max_gen_toks,
                temperature=0.0,
                logprobs=10,
                stop=until,
            )

            for resp, (context, args_) in zip(response.choices, chunk):
                s = resp["text"]

                until_ = args_.get("until", ["<|endoftext|>"])

                for term in until_:
                    if len(term) > 0:
                        s = s.split(term)[0]

                # partial caching
                self.cache_hook.add_partial(
                    "generate_until", (context, {"until": until_}), s
                )

                res.append(s)
        return re_ord.get_original(res)

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
        # Isn't used because we override generate_until
        raise NotImplementedError()

    def loglikelihood_rolling(self, requests) -> List[float]:
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
                disable_tqdm=True,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods


316
def oa_chat_completion(client, **kwargs):
317
318
319
320
321
322
323
324
325
326
327
328
    """Query OpenAI API for chat completion.

    Retry with back-off until they respond
    """
    try:
        import openai, tiktoken  # noqa: E401
    except ModuleNotFoundError:
        raise Exception(
            "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
        )

329
330
331
332
    async def _get_completions(**kwargs):
        chat_completions = await client.chat.completions.create(**kwargs)
        return chat_completions

333
334
335
    backoff_time = 3
    while True:
        try:
lintangsutawika's avatar
lintangsutawika committed
336
337
            return client.chat.completions.create(**kwargs)
        except openai.OpenAIError:
338
339
340
341
342
343
344
            import traceback

            traceback.print_exc()
            time.sleep(backoff_time)
            backoff_time *= 1.5


345
346
347
@register_model("openai-chat-completions")
class OpenaiChatCompletionsLM(LM):

348
    def __init__(
lintangsutawika's avatar
update  
lintangsutawika committed
349
        self, model: str = "gpt-3.5-turbo", truncate: bool = False, batch_size: int = 1
350
    ) -> None:
351
352
        """

lintangsutawika's avatar
lintangsutawika committed
353
354
        :param model: str
            OpenAI API model (e.g. gpt-3.5-turbo)
355
356
357
358
359
360
361
362
363
364
365
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
        super().__init__()
        try:
            import openai, tiktoken  # noqa: E401
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
    please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
            )
lintangsutawika's avatar
lintangsutawika committed
366
367
368
369
370
371
372
373
        self.model = model
        self.frequency_penalty = 0
        self.logit_bias = None
        self.n = 1
        self.presence_penalty = 0
        self.temperature = 1
        self.top_p = 1
        self.tokenizer = tiktoken.encoding_for_model(self.model)
374
375
376
377
        self.vocab_size = self.tokenizer.n_vocab
        self.truncate = truncate
        self.end_of_text_token_id = self.tokenizer.eot_token

378
379
        # Read from environment variable OPENAI_API_KEY
        self.client = OpenAI() # AsyncOpenAI()
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    @property
    def eot_token_id(self):
        return self.end_of_text_token_id

    @property
    def max_length(self) -> int:
        # Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
        return 2048

    @property
    def max_gen_toks(self) -> int:
        return 256

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def tok_encode(self, string: str) -> List[int]:
        return self.tokenizer.encode(string)

    def tok_decode(self, tokens: List[int]) -> str:
        return self.tokenizer.decode(tokens)

    def _encode_pair(
lintangsutawika's avatar
update  
lintangsutawika committed
411
        self, context: str, continuation: str
412
413
414
415
416
417
418
419
420
421
    ) -> Tuple[List[int], List[int]]:
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc
422

423
    def generate_until(self, requests) -> List[str]:
lintangsutawika's avatar
update  
lintangsutawika committed
424
425
        res = defaultdict(list)
        re_ords = {}
426
427
428

        def _collate(x):
            toks = self.tok_encode(x[0])
lintangsutawika's avatar
update  
lintangsutawika committed
429
            return -len(toks), x[0]
430

lintangsutawika's avatar
update  
lintangsutawika committed
431
432
433
434
435
436
437
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
            # within each set of reqs for given kwargs, we reorder by token length, descending.
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
438
439
440
441
442
443
444
445
446
447
448
449
450
451

        def sameuntil_chunks(xs, size):
            ret = []
            lastuntil = xs[0][1]
            for x in xs:
                if len(ret) >= size or x[1] != lastuntil:
                    yield ret, lastuntil
                    ret = []
                    lastuntil = x[1]
                ret.append(x)

            if ret:
                yield ret, lastuntil

lintangsutawika's avatar
update  
lintangsutawika committed
452
453
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
        for key, re_ord in re_ords.items():
454
455
456
457
            # n needs to be 1 because messages in 
            # chat completion are not batch but 
            # is regarded as a single conversation.
            chunks = utils.chunks(re_ord.get_reordered(), n=1)
lintangsutawika's avatar
update  
lintangsutawika committed
458
459
460
461
            for chunk in chunks:
                contexts, all_gen_kwargs = zip(*chunk)
                inps = [{"role": "user", "content": context} for context in contexts]

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
                gen_kwargs = all_gen_kwargs[0]
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                            )
                else:
                    raise ValueError(
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
                    )

                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks

                response = oa_chat_completion(
                    client=self.client,
                    messages=inps,
                    model=self.model,
                    frequency_penalty=self.frequency_penalty,
                    # logit_bias=self.logit_bias,
                    max_tokens=max_gen_toks,
                    n=self.n,
                    presence_penalty=self.presence_penalty,
                    temperature=self.temperature,
                    top_p=self.top_p,
lintangsutawika's avatar
update  
lintangsutawika committed
495
                )
496

497
498
                for resp, (context, args_) in zip(response.choices, chunk):
                    s = resp.message.content
499

500
501
502
503
                    if until is not None:
                        for term in until:
                            if len(term) > 0:
                                s = s.split(term)[0]
lintangsutawika's avatar
update  
lintangsutawika committed
504

505
                    res[key].append(s)
lintangsutawika's avatar
update  
lintangsutawika committed
506

507
508
509
510
511
                    self.cache_hook.add_partial(
                        "generate_until", (context, {"until": until}), s
                    )
                    pbar.update(1)
            # reorder this group of results back to original unsorted form
lintangsutawika's avatar
update  
lintangsutawika committed
512
513
514
            res[key] = re_ord.get_original(res[key])

        pbar.close()
515

lintangsutawika's avatar
update  
lintangsutawika committed
516
        return grouper.get_original(res)
517
518
519
520
521
522

    def loglikelihood(self, requests):
        raise NotImplementedError("No support for logits.")

    def loglikelihood_rolling(self, requests):
        raise NotImplementedError("No support for logits.")