"megatron/core/pipeline_parallel/schedules.py" did not exist on "46c74b4ca06a7794db1e2615544095535cdf12c2"
huggingface.py 38.5 KB
Newer Older
1
2
import os

3
4
import torch
import transformers
5
6
7
8
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
9
from peft import __version__ as PEFT_VERSION, PeftModel
10
11

import copy
12
from collections import defaultdict
13
from tqdm import tqdm
14
from pathlib import Path
15
16
17
18
19
20
21
22
23
24

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

25
from accelerate import Accelerator, find_executable_batch_size, DistributedType
26
from typing import List, Optional, Union
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
52
53


54
@register_model("hf-auto", "hf", "huggingface")
55
class HFLM(LM):
56
57
58
59
60
61
62
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

63
    AUTO_MODEL_CLASS = None
64
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
65

66
67
    def __init__(
        self,
68
69
70
71
        pretrained: Optional[str] = "gpt2",
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
        tokenizer: Optional[str] = None,
lintangsutawika's avatar
lintangsutawika committed
72
        truncation: Optional[bool] = False,
73
74
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
75
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
76
77
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
78
79
        low_cpu_mem_usage: Optional[bool] = True,
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
80
        use_fast_tokenizer: Optional[bool] = True,
lintangsutawika's avatar
lintangsutawika committed
81
        cache_dir: Optional[Union[str, os.PathLike]] = None,
82
        # arguments used for splitting a model across GPUs naively.
83
84
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
85
86
87
88
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
89
90
91
92
93
94
95
96
        # PEFT and quantization options
        peft: Optional[str] = None,
        load_in_8bit: Optional[bool] = False,
        load_in_4bit: Optional[bool] = False,
        bnb_4bit_quant_type: Optional[str] = None,
        bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
        gptq: Optional[Union[bool, str]] = False,
        gptq_use_triton: Optional[bool] = False,
Ethan Smith's avatar
Ethan Smith committed
97
    ) -> None:
98
99
100
101
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
Benjamin Fattori's avatar
Benjamin Fattori committed
102
        assert isinstance(batch_size, (int, str))
103
104

        gpus = torch.cuda.device_count()
105
        accelerator = Accelerator()
haileyschoelkopf's avatar
haileyschoelkopf committed
106

107
        if not (parallelize or accelerator.num_processes > 1):
108
            # use user-passed device
109
            device_list = set(
baberabb's avatar
add mps  
baberabb committed
110
                ["cuda", "cpu", "mps"]
111
112
                + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
            )
113
            if device:
114
                if device not in device_list:
115
116
117
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
118
119
                if device == "mps":
                    eval_logger.info(
baberabb's avatar
baberabb committed
120
                        "MPS is still in beta and only supports float32; setting dtype to float32."
121
                    )
122
123
124
125
126
127
128
129
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
130
        else:
131
132
133
134
            if device != "cuda":
                eval_logger.info(
                    f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                )
135
            # TODO: include in warning that `load_in_8bit` etc. affect this too
136
137
138
            self._device = device

        model_kwargs = {}
139
        if parallelize:
140
141
142
143
144
145
            model_kwargs = _get_accelerate_args(
                device_map_option,
                max_memory_per_gpu,
                max_cpu_memory,
                offload_folder,
            )
146
147
148
149
150
151
152

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
153
            trust_remote_code=trust_remote_code,
154
155
156
157
        )

        if getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
158
159
160
161
162
163
164
165
166
167
168
169
        elif (
            not getattr(self._config, "model_type")
            in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
        ):
            if not trust_remote_code:
                eval_logger.warning(
                    "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                )
            # if model type is neither in HF transformers causal or seq2seq model registries
            # then we default to AutoModelForCausalLM
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
170
        else:
haileyschoelkopf's avatar
haileyschoelkopf committed
171
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
172

haileyschoelkopf's avatar
haileyschoelkopf committed
173
174
175
176
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        if not gptq:
            if load_in_4bit:
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                model_kwargs["load_in_4bit"] = load_in_4bit
                if load_in_4bit:
                    if bnb_4bit_quant_type:
                        model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
                    if bnb_4bit_compute_dtype:
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            bnb_4bit_compute_dtype
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                load_in_8bit=load_in_8bit,
                **model_kwargs,
            )
        else:
gk's avatar
gk committed
202
203
204
205
206
207
208
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                model_basename=None if gptq is True else Path(gptq).stem,
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
                use_triton=gptq_use_triton,
                warmup_triton=gptq_use_triton,
                **model_kwargs,
            )

        if peft:
            if load_in_4bit:
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

228
        # forever after, access self._model through self.model property
229
        self.model.eval()
230
231
232
        self.model.tie_weights()
        if gpus <= 1 and not parallelize:
            # place model onto device, if not using HF Accelerate in any form
233
234
235
236
237
238
            try:
                self.model.to(self.device)
            except ValueError:
                eval_logger.info(
                    "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
239

240
241
242
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
243
            trust_remote_code=trust_remote_code,
haileyschoelkopf's avatar
haileyschoelkopf committed
244
            use_fast=use_fast_tokenizer,
245
246
        )

lintangsutawika's avatar
lintangsutawika committed
247
248
        self.truncation = truncation

249
        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
250
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
251

252
253
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
254
255
256
257
258
259
260
261
262
263
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
264
265
266
267
268
269
270
271
272
273
274

        # multigpu data-parallel support when launched with accelerate
        if gpus > 1:
            if parallelize:
                if accelerator.num_processes > 1:
                    raise RuntimeError(
                        "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                    )
                else:
                    pass
            elif gpus > accelerator.num_processes:
275
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
291
292
293
294
295
296
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.info(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                    )
297
            else:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
298
                assert accelerator.distributed_type in [
lintangsutawika's avatar
lintangsutawika committed
299
300
                    DistributedType.FSDP,
                    DistributedType.MULTI_GPU,
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
301
                ], "Unsupported distributed type provided. Only DDP and FSDP are supported."
302
                if accelerator.distributed_type == DistributedType.FSDP:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
303
                    self._model = accelerator.prepare(self.model)
304
305
                else:
                    self._model = accelerator.prepare_model(
lintangsutawika's avatar
lintangsutawika committed
306
                        self.model, evaluation_mode=True
307
                    )
308
309
310
311
312
313
314
315
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
316

317
318
319
320
321
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

322
323
324
325
326
327
328
329
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

330
331
332
333
334
335
336
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
337
338
339
340
341
342
343
344
345
346
347
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
348

349
    @property
Ethan Smith's avatar
Ethan Smith committed
350
    def max_gen_toks(self) -> int:
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

Ethan Smith's avatar
Ethan Smith committed
369
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
370
371
372
373
374
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
375
376
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
377
378
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
379

Benjamin Fattori's avatar
Benjamin Fattori committed
380
381
382
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
383
384
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
385
386
387
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
388
389
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
390
391
392
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
393
394
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
395
396
397
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
398
            for _ in range(5):
399
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
400
401
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
402
403
404
405
            return batch_size

        batch_size = forward_batch()

406
407
408
409
410
411
412
413
414
415
416
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
417
418
        return batch_size

419
    def tok_encode(self, string: str, left_truncate_len=None):
haileyschoelkopf's avatar
haileyschoelkopf committed
420
        """ """
421
422
423
424
425
426
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
427

428
429
430
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
431

432
433
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
434
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
435
436
437
        self,
        strings: List[str],
        padding_side: str = "left",
438
439
        left_truncate_len: int = None,
        truncation: bool = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
440
441
442
443
444
445
446
447
448
449
450
451
    ):
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
452
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
453
454
455
456
457
458
459
460
461
462
463
464
465
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

466
467
468
469
470
471
472
473
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
474
        :param inps: torch.Tensor
475
476
477
478
479
480
481
482
483
484
485
486
487
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
488
489
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
490
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
491
492
493
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
494
495
496
497
498
499
500
501
502
503
504
505
506
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
507
508
509
510
511
512
513
514
        return self.model.generate(
            context,
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
515
516
517

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
518
519
520
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
521
522
523
524
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
525
526
527
528
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
529
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
530
531
            logits = logits[:contlen]

532
533
        return logits

534
535
536
537
538
539
540
541
542
543
544
    def _encode_pair(self, context, continuation):
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

545
546
547
548
549
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
550
551
552
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
553
            else:
554
                context_enc, continuation_enc = self._encode_pair(context, continuation)
555
556
557
558
559
560
561

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
562
563
564
565
566
567
568
569
570

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

571
572
573
574
575
576
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
577
                        prefix_token=self.eot_token_id,
578
579
580
581
582
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
583
584

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
600
601
602
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
603
604
605
606
607
608
609
610
611
612
613
614
615
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

Ethan Smith's avatar
Ethan Smith committed
616
617
618
    def _loglikelihood_tokens(
        self, requests, disable_tqdm: bool = False, override_bs=None
    ):
619
620
621
622
623
624
625
626
627
628
629
630
631
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)
lintangsutawika's avatar
lintangsutawika committed
632

633
        re_ord = utils.Reorderer(requests, _collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
634
635
636
637

        n_reordered_requests = len(re_ord.get_reordered())
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
lintangsutawika's avatar
lintangsutawika committed
638

Benjamin Fattori's avatar
Benjamin Fattori committed
639
640
641
642
        def _batch_scheduler(pos):
            sched = pos // int(n_reordered_requests / self.batch_schedule)
            if sched in self.batch_sizes:
                return self.batch_sizes[sched]
lintangsutawika's avatar
lintangsutawika committed
643
644
645
            if (len(self.batch_sizes) > 1) and (
                self.batch_sizes[sched - 1] == self.max_batch_size
            ):
646
647
648
                # if previous batch size is already maximal, skip recomputation
                self.batch_sizes[sched] = self.max_batch_size
                return self.batch_sizes[sched]
Benjamin Fattori's avatar
Benjamin Fattori committed
649
650
651
            print(
                f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
            )
lintangsutawika's avatar
lintangsutawika committed
652
653
654
            self.batch_sizes[sched] = self._detect_batch_size(
                re_ord.get_reordered(), pos
            )
Benjamin Fattori's avatar
Benjamin Fattori committed
655
            print(f"Determined largest batch size: {self.batch_sizes[sched]}")
lintangsutawika's avatar
lintangsutawika committed
656
            return self.batch_sizes[sched]
Benjamin Fattori's avatar
Benjamin Fattori committed
657

658
659
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
Benjamin Fattori's avatar
Benjamin Fattori committed
660
661
662
663
664
665
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=_batch_scheduler
lintangsutawika's avatar
lintangsutawika committed
666
667
668
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Benjamin Fattori's avatar
Benjamin Fattori committed
669
            else None,
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        ):
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
690
                # how this all works (illustrated on a causal decoder-only setup):
691
692
693
694
695
696
697
698
699
700
701
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
702
703
                        device=self.device,
                    )
704
705
706
707
708
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
709
                        device=self.device,
710
                    )
711
                    (inplen,) = inp.shape
712
713
714
715

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

716
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
717
                        (continuation_enc)[-self.max_length :],
718
719
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
720
                        dtype=torch.long,
721
722
                        device=self.device,
                    )
723
724
                    (contlen,) = cont.shape

725
726
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
727
728
729
730
731
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
732

haileyschoelkopf's avatar
haileyschoelkopf committed
733
734
735
736
737
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
738
739
740
741

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
742

743
744
745
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
746
747
748
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
749
750
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
751
752
753
754
755
756
757
758
759
760
761
762
763
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
764
765
766

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
767
            )  # [batch, padding_length (inp or cont), vocab]
768
769
770
771
772
773

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
774
                # take only logits in the continuation
775
                # (discard context toks if decoder-only ; discard right-padding)
776
777
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
778
                ctx_len = (
779
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
780
781
782
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
783
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
784
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
785
786
787

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
788
789
790
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
                ).unsqueeze(
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
806
807
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)

808
809
810
        return re_ord.get_original(res)

    def greedy_until(self, requests):
811
812
        res = defaultdict(list)
        re_ords = {}
813
814

        def _collate(x):
815
816
817
818
819
820
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
821
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
822
            return -len(toks), x[0]
823

824
825
826
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
827
828
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
829
            # within each set of reqs for given kwargs, we reorder by token length, descending.
830
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
831

832
833
834
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))

        # for each different set of kwargs, we execute all requests, by batch.
835
836
        for key, re_ord in re_ords.items():
            for chunk in utils.chunks(
haileyschoelkopf's avatar
haileyschoelkopf committed
837
                re_ord.get_reordered(),
838
839
840
                self.batch_size,
            ):
                contexts, all_gen_kwargs = zip(*chunk)
841
842
843
844
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
845
846
847
848
849
850
851
852
853
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
854
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
855
856
857
                            )
                else:
                    raise ValueError(
858
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
859
860
861
862
863
864
865
866
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
                # first stop sequence is used to halt generation upon encountering
867
                primary_until = [until[0]]
868

869
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
870
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
871
872
873
874
875
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
876

877
                # encode, pad, and truncate contexts for this batch
878
                context_enc, attn_masks = self.tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
879
880
881
                    contexts,
                    left_truncate_len=max_ctx_len,
                    truncation=self.truncation,
882
883
884
885
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

886
                if "max_length" not in kwargs:
Lintang Sutawika's avatar
Lintang Sutawika committed
887
                    kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
888

889
                # perform batched generation
890
891
892
893
894
895
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
                    stop=primary_until,
                    **kwargs,
                )
896

897
898
899
900
901
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
902

903
                    s = self.tok_decode(cont_toks)
904

905
906
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
907
908
909
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
910
                            s = s.split(term)[0]
911

912
                    res[key].append(s)
913

914
915
916
917
                    self.cache_hook.add_partial(
                        "greedy_until", (context, gen_kwargs), s
                    )
                    pbar.update(1)
918
            # reorder this group of results back to original unsorted form
919
            res[key] = re_ord.get_original(res[key])
920

921
        pbar.close()
922

923
        return grouper.get_original(res)