squad.py 5.95 KB
Newer Older
1
import datasets
2
3
4
from math import exp
from lm_eval.base import rf
from lm_eval.metrics import f1_score, mean
5
from . common import HFTask
Leo Gao's avatar
Leo Gao committed
6
7
8
9
10
11
12
13
14
15
16
17
18
from functools import partial


def _squad_metric(predictions, references):
    squad_metric = datasets.load_metric("squad_v2")
    return squad_metric.compute(predictions=predictions, references=references)


def _squad_agg(key, items):
    predictions, references = zip(*items)

    return _squad_metric(predictions=predictions, references=references)[key]

Charles Foster's avatar
Charles Foster committed
19

Leo Gao's avatar
Leo Gao committed
20
class SQuAD2(HFTask):
Charles Foster's avatar
Charles Foster committed
21
22
23
24
25
26
27
28
29
    DATASET_PATH = "squad_v2"
    DATASET_NAME = None

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

30
31
32
    def has_test_docs(self):
        return False

Charles Foster's avatar
Charles Foster committed
33
    def training_docs(self):
34
        return self.data["train"]
Charles Foster's avatar
Charles Foster committed
35
36

    def validation_docs(self):
37
        return self.data["validation"]
Charles Foster's avatar
Charles Foster committed
38
39

    def fewshot_description(self):
40
41
        # TODO: figure out description
        return ""
Charles Foster's avatar
Charles Foster committed
42

43
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
44
        return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Question: ' + doc['question'] + '\n\n' + 'Answer:'
45
46
47
48
49
50
51

    def doc_to_target(self, doc):
        answer_list = doc['answers']['text']
        if len(answer_list) > 0:
            answer = answer_list[0]
        else:
            answer = 'unanswerable'
52
        return " " + answer
Charles Foster's avatar
Charles Foster committed
53

Leo Gao's avatar
Leo Gao committed
54
55
56
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
57

Leo Gao's avatar
Leo Gao committed
58
59
60
61
62
63
64
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
65
        continuation = rf.greedy_until(ctx, ['\n'])
66
        is_unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
67
        return continuation, is_unanswerable
Leo Gao's avatar
Leo Gao committed
68
69
70
71
72
73
74
75
76
77
78
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
Leo Gao's avatar
Leo Gao committed
79
        continuation, (logprob_unanswerable, _) = results
80

81
82
        no_answer_probability = exp(logprob_unanswerable)
        
Leo Gao's avatar
Leo Gao committed
83
        predictions = {
84
            'id': doc['id'],
Leo Gao's avatar
Leo Gao committed
85
            'prediction_text': continuation,
86
            'no_answer_probability': no_answer_probability,
Leo Gao's avatar
Leo Gao committed
87
        }
88

Leo Gao's avatar
Leo Gao committed
89
        references = {
90
91
            'id': doc['id'],
            'answers': doc['answers'],
Leo Gao's avatar
Leo Gao committed
92
        }
93

Leo Gao's avatar
Leo Gao committed
94
95
96
97
98
99
100
101
102
103
        return { 
            'exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
            'f1': (predictions, references), #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': (predictions, references), # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': (predictions, references), # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': (predictions, references), # The F-score of predicted tokens versus the gold answer
            'best_exact': (predictions, references), # Best exact match (with varying threshold)
            'best_f1': (predictions, references), # Best F1 (with varying threshold)
        }
Leo Gao's avatar
Leo Gao committed
104
105
106
107
108
109
110

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
111
        return { 
Leo Gao's avatar
Leo Gao committed
112
113
114
115
116
117
118
119
            'exact': partial(_squad_agg, 'exact'), # Exact match (the normalized answer exactly match the gold answer)
            'f1': partial(_squad_agg, 'f1'), #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': partial(_squad_agg, 'HasAns_exact'), # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': partial(_squad_agg, 'HasAns_f1'), # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': partial(_squad_agg, 'NoAns_exact'), # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': partial(_squad_agg, 'NoAns_f1'), # The F-score of predicted tokens versus the gold answer
            'best_exact': partial(_squad_agg, 'best_exact'), # Best exact match (with varying threshold)
            'best_f1': partial(_squad_agg, 'best_f1'), # Best F1 (with varying threshold)
120
        }
Leo Gao's avatar
Leo Gao committed
121
122
123
124
125
126
127

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
128
129
130
131
132
133
134
135
136
137
        return { 
            'exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'f1': True, #  The F-score of predicted tokens versus the gold answer
            'HasAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'NoAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'best_exact': True, # Best exact match (with varying threshold)
            'best_f1': True, # Best F1 (with varying threshold)
        }