squad.py 5.12 KB
Newer Older
1
import datasets
Charles Foster's avatar
Charles Foster committed
2
from tqdm import auto as tqdm_lib
3
4
5

from lm_eval.base import rf, f1_score, mean
from . common import HFTask
Charles Foster's avatar
Charles Foster committed
6
7
8
9
10
11
12
13
14
15
16

class SQuAD(HFTask):
    DATASET_PATH = "squad_v2"
    DATASET_NAME = None

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

17
18
19
    def has_test_docs(self):
        return False

Charles Foster's avatar
Charles Foster committed
20
    def training_docs(self):
21
        return self.data["train"]
Charles Foster's avatar
Charles Foster committed
22
23

    def validation_docs(self):
24
        return self.data["validation"]
Charles Foster's avatar
Charles Foster committed
25
26

    def fewshot_description(self):
27
28
        # TODO: figure out description
        return ""
Charles Foster's avatar
Charles Foster committed
29

30
31
32
33
34
35
36
37
38
39
    def doc_to_text(self, doc):
        return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: '

    def doc_to_target(self, doc):
        answer_list = doc['answers']['text']
        if len(answer_list) > 0:
            answer = answer_list[0]
        else:
            answer = 'unanswerable'
        return answer
Charles Foster's avatar
Charles Foster committed
40

Leo Gao's avatar
Leo Gao committed
41
42
43
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
44

Leo Gao's avatar
Leo Gao committed
45
46
47
48
49
50
51
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
52
53
        continuation = rf.greedy_until(ctx, ['\n'])
        return continuation
Leo Gao's avatar
Leo Gao committed
54
55
56
57
58
59
60
61
62
63
64
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        squad_metric = datasets.load_metric("squad_v2")

        predictions = {
            'id': doc['id'],
            'prediction_text': results[0],
        }

        references = {
            'id': doc['id'],
            'answers': doc['answers'],
        }

        metrics = squad_metric.compute(predictions=predictions, references=references)

        return metrics
Leo Gao's avatar
Leo Gao committed
80
81
82
83
84
85
86

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        return { 
            'exact': mean, # Exact match (the normalized answer exactly match the gold answer)
            'f1': mean, #  The F-score of predicted tokens versus the gold answer
            'total': mean, # Number of score considered
            'HasAns_exact': mean, # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': mean, # The F-score of predicted tokens versus the gold answer
            'HasAns_total': mean, # Number of score considered
            'NoAns_exact': mean, # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': mean, # The F-score of predicted tokens versus the gold answer
            'NoAns_total': mean, # Number of score considered
            'best_exact': mean, # Best exact match (with varying threshold)
            'best_exact_thresh': mean, # No-answer probability threshold associated to the best exact match
            'best_f1': mean, # Best F1 (with varying threshold)
            'best_f1_thresh': mean, # No-answer probability threshold associated to the best F1
        }
Leo Gao's avatar
Leo Gao committed
102
103
104
105
106
107
108

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        return { 
            'exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'f1': True, #  The F-score of predicted tokens versus the gold answer
            'total': None, # Number of score considered
            'HasAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'HasAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'HasAns_total': None, # Number of score considered
            'NoAns_exact': True, # Exact match (the normalized answer exactly match the gold answer)
            'NoAns_f1': True, # The F-score of predicted tokens versus the gold answer
            'NoAns_total': None, # Number of score considered
            'best_exact': True, # Best exact match (with varying threshold)
            'best_exact_thresh': None, # No-answer probability threshold associated to the best exact match
            'best_f1': True, # Best F1 (with varying threshold)
            'best_f1_thresh': None, # No-answer probability threshold associated to the best F1
        }