"ollama/llm/llama.cpp/ggml/src/llamafile/sgemm.cpp" did not exist on "22cb4ffc026b1fb71549031f174dc92f3751db56"
huggingface.py 37.8 KB
Newer Older
1
2
import os

3
4
import torch
import transformers
5
6
7
8
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
9
from peft import __version__ as PEFT_VERSION, PeftModel
10
11

import copy
12
from collections import defaultdict
13
from tqdm import tqdm
14
from pathlib import Path
15
16
17
18
19
20
21
22
23
24

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

Benjamin Fattori's avatar
Benjamin Fattori committed
25
from accelerate import Accelerator, find_executable_batch_size
26
from typing import List, Optional, Union
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
52
53


54
@register_model("hf-auto", "hf", "huggingface")
55
class HFLM(LM):
56
57
58
59
60
61
62
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

63
    AUTO_MODEL_CLASS = None
64
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
65

66
67
    def __init__(
        self,
68
69
70
71
72
73
        pretrained: Optional[str] = "gpt2",
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
        tokenizer: Optional[str] = None,
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
74
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
75
76
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
77
78
        low_cpu_mem_usage: Optional[bool] = True,
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
79
        use_fast_tokenizer: Optional[bool] = True,
80
        cache_dir: Optional[Union[str,os.PathLike]] = None,
81
        # arguments used for splitting a model across GPUs naively.
82
83
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
84
85
86
87
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
88
89
90
91
92
93
94
95
        # PEFT and quantization options
        peft: Optional[str] = None,
        load_in_8bit: Optional[bool] = False,
        load_in_4bit: Optional[bool] = False,
        bnb_4bit_quant_type: Optional[str] = None,
        bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
        gptq: Optional[Union[bool, str]] = False,
        gptq_use_triton: Optional[bool] = False,
96
97
98
99
100
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
Benjamin Fattori's avatar
Benjamin Fattori committed
101
        assert isinstance(batch_size, (int, str))
102
103

        gpus = torch.cuda.device_count()
104
        accelerator = Accelerator()
haileyschoelkopf's avatar
haileyschoelkopf committed
105

106
        if not (parallelize or accelerator.num_processes > 1):
107
            # use user-passed device
108
            device_list = set(
baberabb's avatar
add mps  
baberabb committed
109
                ["cuda", "cpu", "mps"]
110
111
                + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
            )
112
            if device:
113
                if device not in device_list:
114
115
116
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
117
118
                if device == "mps":
                    eval_logger.info(
baberabb's avatar
baberabb committed
119
                        "MPS is still in beta and only supports float32; setting dtype to float32."
120
                    )
121
122
123
124
125
126
127
128
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
129
        else:
130
131
132
133
            if device != "cuda":
                eval_logger.info(
                    f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                )
134
            # TODO: include in warning that `load_in_8bit` etc. affect this too
135
136
137
            self._device = device

        model_kwargs = {}
138
        if parallelize:
139
140
141
142
143
144
            model_kwargs = _get_accelerate_args(
                device_map_option,
                max_memory_per_gpu,
                max_cpu_memory,
                offload_folder,
            )
145
146
147
148
149
150
151

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
152
            trust_remote_code=trust_remote_code,
153
154
155
156
        )

        if getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
157
158
159
160
161
162
163
164
165
166
167
168
        elif (
            not getattr(self._config, "model_type")
            in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
        ):
            if not trust_remote_code:
                eval_logger.warning(
                    "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                )
            # if model type is neither in HF transformers causal or seq2seq model registries
            # then we default to AutoModelForCausalLM
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
169
        else:
haileyschoelkopf's avatar
haileyschoelkopf committed
170
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
171

haileyschoelkopf's avatar
haileyschoelkopf committed
172
173
174
175
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        if not gptq:
            if load_in_4bit:
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                model_kwargs["load_in_4bit"] = load_in_4bit
                if load_in_4bit:
                    if bnb_4bit_quant_type:
                        model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
                    if bnb_4bit_compute_dtype:
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            bnb_4bit_compute_dtype
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                load_in_8bit=load_in_8bit,
                **model_kwargs,
            )
        else:
gk's avatar
gk committed
201
202
203
204
205
206
207
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                model_basename=None if gptq is True else Path(gptq).stem,
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
                use_triton=gptq_use_triton,
                warmup_triton=gptq_use_triton,
                **model_kwargs,
            )

        if peft:
            if load_in_4bit:
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

227
        # forever after, access self._model through self.model property
228
        self.model.eval()
229
230
231
        self.model.tie_weights()
        if gpus <= 1 and not parallelize:
            # place model onto device, if not using HF Accelerate in any form
232
233
234
235
236
237
            try:
                self.model.to(self.device)
            except ValueError:
                eval_logger.info(
                    "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
238

239
240
241
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
242
            trust_remote_code=trust_remote_code,
haileyschoelkopf's avatar
haileyschoelkopf committed
243
            use_fast=use_fast_tokenizer,
244
245
246
        )

        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
247
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
248

249
250
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
251
252
253
254
255
256
257
258
259
260
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
261
262
263
264
265
266
267
268
269
270
271

        # multigpu data-parallel support when launched with accelerate
        if gpus > 1:
            if parallelize:
                if accelerator.num_processes > 1:
                    raise RuntimeError(
                        "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                    )
                else:
                    pass
            elif gpus > accelerator.num_processes:
272
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
288
289
290
291
292
293
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.info(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                    )
294
            else:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
295
296
297
                self._model = accelerator.prepare_model(
                    self.model, evaluation_mode=True
                )
298
299
300
301
302
303
304
305
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
306

307
308
309
310
311
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

312
313
314
315
316
317
318
319
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

320
321
322
323
324
325
326
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
327
328
329
330
331
332
333
334
335
336
337
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

Benjamin Fattori's avatar
Benjamin Fattori committed
359
360
361
362
363
364
    def _detect_batch_size(self, requests=None, pos=0):
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
365
366
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
367
368
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
369

Benjamin Fattori's avatar
Benjamin Fattori committed
370
371
372
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
373
374
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
375
376
377
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
378
379
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
380
381
382
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
383
384
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
385
386
387
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
388
            for _ in range(5):
389
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
390
391
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
392
393
394
395
            return batch_size

        batch_size = forward_batch()

396
397
398
399
400
401
402
403
404
405
406
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
407
408
        return batch_size

409
    def tok_encode(self, string: str, left_truncate_len=None):
haileyschoelkopf's avatar
haileyschoelkopf committed
410
        """ """
411
412
413
414
415
416
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
417

418
419
420
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
421

422
423
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    def tok_batch_encode(
        self, strings: List[str], padding_side="left", left_truncate_len=None
    ):
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

451
452
453
454
455
456
457
458
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
459
        :param inps: torch.Tensor
460
461
462
463
464
465
466
467
468
469
470
471
472
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
473
474
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
475
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
476
477
478
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
479
480
481
482
483
484
485
486
487
488
489
490
491
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
492
493
494
495
496
497
498
499
        return self.model.generate(
            context,
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
500
501
502

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
503
504
505
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
506
507
508
509
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
510
511
512
513
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
514
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
515
516
            logits = logits[:contlen]

517
518
        return logits

519
520
521
522
523
524
525
526
527
528
529
    def _encode_pair(self, context, continuation):
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

530
531
532
533
534
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
535
536
537
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
538
            else:
539
                context_enc, continuation_enc = self._encode_pair(context, continuation)
540
541
542
543
544
545
546

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
547
548
549
550
551
552
553
554
555

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

556
557
558
559
560
561
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
562
                        prefix_token=self.eot_token_id,
563
564
565
566
567
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
568
569

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
585
586
587
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
588
589
590
591
592
593
594
595
596
597
598
599
600
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

Benjamin Fattori's avatar
Benjamin Fattori committed
601
    def _loglikelihood_tokens(self, requests, disable_tqdm=False, override_bs=None):
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
617
618
619
620

        n_reordered_requests = len(re_ord.get_reordered())
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
lintangsutawika's avatar
lintangsutawika committed
621

Benjamin Fattori's avatar
Benjamin Fattori committed
622
623
624
625
        def _batch_scheduler(pos):
            sched = pos // int(n_reordered_requests / self.batch_schedule)
            if sched in self.batch_sizes:
                return self.batch_sizes[sched]
lintangsutawika's avatar
lintangsutawika committed
626
627
628
            if (len(self.batch_sizes) > 1) and (
                self.batch_sizes[sched - 1] == self.max_batch_size
            ):
629
630
631
                # if previous batch size is already maximal, skip recomputation
                self.batch_sizes[sched] = self.max_batch_size
                return self.batch_sizes[sched]
Benjamin Fattori's avatar
Benjamin Fattori committed
632
633
634
            print(
                f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
            )
lintangsutawika's avatar
lintangsutawika committed
635
636
637
            self.batch_sizes[sched] = self._detect_batch_size(
                re_ord.get_reordered(), pos
            )
Benjamin Fattori's avatar
Benjamin Fattori committed
638
            print(f"Determined largest batch size: {self.batch_sizes[sched]}")
lintangsutawika's avatar
lintangsutawika committed
639
            return self.batch_sizes[sched]
Benjamin Fattori's avatar
Benjamin Fattori committed
640

641
642
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
Benjamin Fattori's avatar
Benjamin Fattori committed
643
644
645
646
647
648
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=_batch_scheduler
lintangsutawika's avatar
lintangsutawika committed
649
650
651
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Benjamin Fattori's avatar
Benjamin Fattori committed
652
            else None,
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        ):
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
673
                # how this all works (illustrated on a causal decoder-only setup):
674
675
676
677
678
679
680
681
682
683
684
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
685
686
                        device=self.device,
                    )
687
688
689
690
691
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
692
                        device=self.device,
693
                    )
694
                    (inplen,) = inp.shape
695
696
697
698

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

699
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
700
                        (continuation_enc)[-self.max_length :],
701
702
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
703
                        dtype=torch.long,
704
705
                        device=self.device,
                    )
706
707
                    (contlen,) = cont.shape

708
709
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
710
711
712
713
714
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
715

haileyschoelkopf's avatar
haileyschoelkopf committed
716
717
718
719
720
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
721
722
723
724

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
725

726
727
728
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
729
730
731
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
732
733
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
734
735
736
737
738
739
740
741
742
743
744
745
746
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
747
748
749

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
750
            )  # [batch, padding_length (inp or cont), vocab]
751
752
753
754
755
756

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
757
                # take only logits in the continuation
758
                # (discard context toks if decoder-only ; discard right-padding)
759
760
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
761
                ctx_len = (
762
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
763
764
765
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
766
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
767
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
768
769
770

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
771
772
773
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
                ).unsqueeze(
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
789
790
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)

791
792
793
        return re_ord.get_original(res)

    def greedy_until(self, requests):
794
795
        res = defaultdict(list)
        re_ords = {}
796
797

        def _collate(x):
798
799
800
801
802
803
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
804
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
805
            return -len(toks), x[0]
806

807
808
809
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
810
811
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
812
            # within each set of reqs for given kwargs, we reorder by token length, descending.
813
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
814

815
816
817
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))

        # for each different set of kwargs, we execute all requests, by batch.
818
819
        for key, re_ord in re_ords.items():
            for chunk in utils.chunks(
haileyschoelkopf's avatar
haileyschoelkopf committed
820
                re_ord.get_reordered(),
821
822
823
                self.batch_size,
            ):
                contexts, all_gen_kwargs = zip(*chunk)
824
825
826
827
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
828
829
830
831
832
833
834
835
836
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
837
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
838
839
840
                            )
                else:
                    raise ValueError(
841
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
842
843
844
845
846
847
848
849
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
                # first stop sequence is used to halt generation upon encountering
850
                primary_until = [until[0]]
851

852
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
853
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
854
855
856
857
858
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
859

860
                # encode, pad, and truncate contexts for this batch
861
862
863
864
865
866
                context_enc, attn_masks = self.tok_batch_encode(
                    contexts, left_truncate_len=max_ctx_len
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

867
                if "max_length" not in kwargs:
Lintang Sutawika's avatar
Lintang Sutawika committed
868
                    kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
869

870
                # perform batched generation
871
872
873
874
875
876
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
                    stop=primary_until,
                    **kwargs,
                )
877

878
879
880
881
882
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
883

884
                    s = self.tok_decode(cont_toks)
885

886
887
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
888
889
890
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
891
                            s = s.split(term)[0]
892

893
                    res[key].append(s)
894

895
896
897
898
                    self.cache_hook.add_partial(
                        "greedy_until", (context, gen_kwargs), s
                    )
                    pbar.update(1)
899
            # reorder this group of results back to original unsorted form
900
            res[key] = re_ord.get_original(res[key])
901

902
        pbar.close()
903

904
        return grouper.get_original(res)