lambada.py 3.04 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
from lm_eval.base import Dataset
sdtblck's avatar
sdtblck committed
2
from lm_eval.utils import sh
sdtblck's avatar
sdtblck committed
3
4
5
6
7
8
import json
import requests
import ftfy


class Lambada(Dataset):
9
10
    def __init__(self):
        self.download()
sdtblck's avatar
sdtblck committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    def download(self):
        sh("mkdir -p data/lambada")
        with open("data/lambada/lambada_test.json", 'w') as f:
            req = requests.get("https://storage.googleapis.com/gpt-2/data/lambada_test.jsonl")
            req.raise_for_status()
            jsons = [json.loads(l) for l in req.iter_lines()]
            texts = [ftfy.fix_text(j['text'], normalization='NFKC') for j in jsons]
            json.dump(texts, f)

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

    def training_docs(self):
        pass

    def validation_docs(self):
        pass

    def load_doc(self, myjson):
36
        return [doc for doc in myjson]
sdtblck's avatar
sdtblck committed
37
38
39
40
41
42

    def test_docs(self):
        myjson = json.load(open("data/lambada/lambada_test.json"))
        return self.load_doc(myjson)

    def doc_to_text(self, doc, include_target=True):
Leo Gao's avatar
Leo Gao committed
43
44
45
46
47
        # TODO: implement.
    
    def fewshot_description(self):
        # TODO: figure out description
        return ""
sdtblck's avatar
sdtblck committed
48

Leo Gao's avatar
Leo Gao committed
49
50
51
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
52

Leo Gao's avatar
Leo Gao committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')