from lm_eval.base import Dataset from lm_eval.utils import sh import json import requests import ftfy class Lambada(Dataset): def __init__(self): self.download() def download(self): sh("mkdir -p data/lambada") with open("data/lambada/lambada_test.json", 'w') as f: req = requests.get("https://storage.googleapis.com/gpt-2/data/lambada_test.jsonl") req.raise_for_status() jsons = [json.loads(l) for l in req.iter_lines()] texts = [ftfy.fix_text(j['text'], normalization='NFKC') for j in jsons] json.dump(texts, f) def has_training_docs(self): return False def has_validation_docs(self): return False def has_test_docs(self): return True def training_docs(self): pass def validation_docs(self): pass def load_doc(self, myjson): return [doc for doc in myjson] def test_docs(self): myjson = json.load(open("data/lambada/lambada_test.json")) return self.load_doc(myjson) def doc_to_text(self, doc, include_target=True): # TODO: implement. def fewshot_description(self): # TODO: figure out description return "" def construct_requests(self, doc, ctx): """ Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented')