utils.py 5.54 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
# noqa
import itertools
import json
import os
import re
Baber's avatar
Baber committed
6
from functools import partial, cache
Baber's avatar
Baber committed
7
8
9
10
11
from typing import Literal

import datasets
from transformers import AutoTokenizer

Baber's avatar
Baber committed
12
from lm_eval.tasks.ruler.essays import get_essays, get_all_essays
Baber's avatar
Baber committed
13
14
15
from lm_eval.tasks.ruler.prepare import generate_samples


Baber's avatar
Baber committed
16
17
@cache
def get_tokenizer():
Baber's avatar
nit  
Baber committed
18
19
20
    return AutoTokenizer.from_pretrained(
        os.environ.get("TOKENIZER"), trust_remote_code=True
    )
Baber's avatar
Baber committed
21
22
23


# TOKENIZER = AutoTokenizer.from_pretrained(os.environ.get("TOKENIZER"))
Baber's avatar
Baber committed
24
TEMPLATE = """Some special magic {type_needle_v} are hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat are all the special magic {type_needle_v} for {query} mentioned in the provided text? The special magic {type_needle_v} for {query} mentioned in the provided text are"""
Baber's avatar
Baber committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

SEQ_LENGTHS = (
    131072,
    65536,
    32768,
    16384,
    8192,
    4096,
)

NUM_SAMPLES = 500
REMOVE_NEWLINE_TAB = ""
STOP_WORDS = ""
RANDOM_SEED = 42


Baber's avatar
Baber committed
41
@cache
Baber's avatar
Baber committed
42
43
44
def get_haystack(type_haystack: Literal["essay", "repeat", "needle"]):
    NEEDLE = "One of the special magic {type_needle_v} for {key} is: {value}."
    if type_haystack == "essay":
Baber's avatar
Baber committed
45
        essay = get_all_essays()["text"]
Baber's avatar
Baber committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        # essay = json.load(open(essay))["text"]
        haystack = re.sub(r"\s+", " ", essay).split(" ")
    elif type_haystack == "repeat":
        haystack = "The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again."
    elif type_haystack == "needle":
        haystack = NEEDLE
    else:
        raise NotImplementedError(f"{type_haystack} is not implemented.")
    return haystack


def flatten(df):
    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }


# ruff: noqa
niah_single_1 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="repeat"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="repeat",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
74
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
75
76
77
78
79
80
81
82
83
84
85
86
    )
    for seq in SEQ_LENGTHS
)
# ruff: noqa
niah_single_2 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
87
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
88
89
90
91
92
93
94
95
96
97
98
99
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_single_3 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="uuids",
Baber's avatar
Baber committed
100
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
101
102
103
104
105
106
107
108
109
110
111
112
113
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_1 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_k=4,
Baber's avatar
Baber committed
114
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
115
116
117
118
119
120
121
122
123
124
125
126
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_2 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
127
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
128
129
130
131
132
133
134
135
136
137
138
139
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_3 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="uuids",
        type_needle_v="uuids",
Baber's avatar
Baber committed
140
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
141
142
143
144
145
146
147
148
149
150
151
152
153
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multivalue = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_v=4,
Baber's avatar
Baber committed
154
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
155
156
157
158
159
160
161
162
163
164
165
166
167
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multiquery = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_q=4,
Baber's avatar
Baber committed
168
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
169
170
171
172
173
    )
    for seq in SEQ_LENGTHS
)


Baber's avatar
Baber committed
174
def postprocess_pred(predict_str: str) -> str:
Baber's avatar
Baber committed
175
176
177
178
179
180
181
182
183
    predict_str = predict_str.strip()

    # Remove all non-printable characters
    np_pattern = re.compile(r"[\x00-\x1f]")
    predict_str = np_pattern.sub("\n", predict_str).strip()

    return predict_str


Baber's avatar
Baber committed
184
185
186
187
188
189
190
191
192
193
def string_match_all(preds: list[str], refs: list[list[str]]) -> float:
    score = sum(
        [
            sum([1.0 if r.lower() in pred.lower() else 0.0 for r in ref]) / len(ref)
            for pred, ref in zip(preds, refs)
        ]
    ) / len(preds)
    return score


Baber's avatar
Baber committed
194
195
def process_results(doc: dict, results: list[str]) -> dict[str, float]:
    # hacky: set all other lengths to -1
Baber's avatar
Baber committed
196
197
    metrics = {str(length): -1.0 for length in SEQ_LENGTHS}
    input_len = doc["max_length"]
Baber's avatar
Baber committed
198
199
200
    pred = postprocess_pred(results[0])
    score = string_match_all([pred], [doc["outputs"]])
    metrics[str(input_len)] = score
Baber's avatar
Baber committed
201
202
203
    return metrics


Baber's avatar
Baber committed
204
def aggregate_metrics(metrics: list[float]) -> float:
Baber's avatar
Baber committed
205
206
207
208
209
    res = [x for x in metrics if x != -1]
    if not res:
        # we don't have any samples with this length
        return 0.0
    return sum(res) / len(res)