utils.py 5.13 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
# noqa
import itertools
import json
import os
import re
Baber's avatar
Baber committed
6
from functools import partial, cache
Baber's avatar
Baber committed
7
8
9
10
11
from typing import Literal

import datasets
from transformers import AutoTokenizer

Baber's avatar
Baber committed
12
from lm_eval.tasks.ruler.essays import get_essays, get_all_essays
Baber's avatar
Baber committed
13
14
15
from lm_eval.tasks.ruler.prepare import generate_samples


Baber's avatar
Baber committed
16
17
18
19
20
21
@cache
def get_tokenizer():
    return AutoTokenizer.from_pretrained(os.environ.get("TOKENIZER"))


# TOKENIZER = AutoTokenizer.from_pretrained(os.environ.get("TOKENIZER"))
Baber's avatar
Baber committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
TEMPLATE = """Some special magic {type_needle_v} are hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat are all the special magic {type_needle_v} for {query} mentioned in the provided text?"""

SEQ_LENGTHS = (
    131072,
    65536,
    32768,
    16384,
    8192,
    4096,
)

NUM_SAMPLES = 500
REMOVE_NEWLINE_TAB = ""
STOP_WORDS = ""
RANDOM_SEED = 42


Baber's avatar
Baber committed
39
@cache
Baber's avatar
Baber committed
40
41
42
def get_haystack(type_haystack: Literal["essay", "repeat", "needle"]):
    NEEDLE = "One of the special magic {type_needle_v} for {key} is: {value}."
    if type_haystack == "essay":
Baber's avatar
Baber committed
43
        essay = get_all_essays()["text"]
Baber's avatar
Baber committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        # essay = json.load(open(essay))["text"]
        haystack = re.sub(r"\s+", " ", essay).split(" ")
    elif type_haystack == "repeat":
        haystack = "The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again."
    elif type_haystack == "needle":
        haystack = NEEDLE
    else:
        raise NotImplementedError(f"{type_haystack} is not implemented.")
    return haystack


def flatten(df):
    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }


# ruff: noqa
niah_single_1 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="repeat"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="repeat",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
72
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
73
74
75
76
77
78
79
80
81
82
83
84
    )
    for seq in SEQ_LENGTHS
)
# ruff: noqa
niah_single_2 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
85
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
86
87
88
89
90
91
92
93
94
95
96
97
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_single_3 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="uuids",
Baber's avatar
Baber committed
98
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
99
100
101
102
103
104
105
106
107
108
109
110
111
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_1 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_k=4,
Baber's avatar
Baber committed
112
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
113
114
115
116
117
118
119
120
121
122
123
124
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_2 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
125
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
126
127
128
129
130
131
132
133
134
135
136
137
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multikey_3 = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="uuids",
        type_needle_v="uuids",
Baber's avatar
Baber committed
138
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
139
140
141
142
143
144
145
146
147
148
149
150
151
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multivalue = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_v=4,
Baber's avatar
Baber committed
152
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
153
154
155
156
157
158
159
160
161
162
163
164
165
    )
    for seq in SEQ_LENGTHS
)
# noqa
niah_multiquery = lambda: flatten(
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_q=4,
Baber's avatar
Baber committed
166
        TOKENIZER=get_tokenizer(),
Baber's avatar
Baber committed
167
168
169
170
171
    )
    for seq in SEQ_LENGTHS
)


Baber's avatar
Baber committed
172
def postprocess_pred(predict_str: str) -> str:
Baber's avatar
Baber committed
173
174
175
176
177
178
179
180
181
    predict_str = predict_str.strip()

    # Remove all non-printable characters
    np_pattern = re.compile(r"[\x00-\x1f]")
    predict_str = np_pattern.sub("\n", predict_str).strip()

    return predict_str


Baber's avatar
Baber committed
182
183
def process_results(doc: dict, results: list[str]) -> dict[str, float]:
    # hacky: set all other lengths to -1
Baber's avatar
Baber committed
184
185
186
    metrics = {str(length): -1.0 for length in SEQ_LENGTHS}
    input_len = doc["max_length"]
    acc = 1.0 if postprocess_pred(results[0]) in doc["input"] else 0.0
Baber's avatar
Baber committed
187
    metrics[str(input_len)] = acc
Baber's avatar
Baber committed
188
189
190
    return metrics


Baber's avatar
Baber committed
191
192
193
194
195
196
def aggregate_metrics(metrics: list[int]) -> float:
    res = [x for x in metrics if x != -1]
    if not res:
        # we don't have any samples with this length
        return 0.0
    return sum(res) / len(res)