__main__.py 7.56 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import os
lintangsutawika's avatar
lintangsutawika committed
2
import re
Jason Phang's avatar
Jason Phang committed
3
import json
4
import fnmatch
lintangsutawika's avatar
lintangsutawika committed
5
import jsonlines
lintangsutawika's avatar
lintangsutawika committed
6
import argparse
FarzanehNakhaee's avatar
FarzanehNakhaee committed
7
import logging
8
from pathlib import Path
Leo Gao's avatar
Leo Gao committed
9

10
from lm_eval import evaluator, utils
11
from lm_eval.api.registry import ALL_TASKS
lintangsutawika's avatar
lintangsutawika committed
12
from lm_eval.logger import eval_logger, SPACING
13
from lm_eval.tasks import include_path
lintangsutawika's avatar
format  
lintangsutawika committed
14

haileyschoelkopf's avatar
haileyschoelkopf committed
15
from typing import Union
16

Fabrizio Milo's avatar
Fabrizio Milo committed
17

haileyschoelkopf's avatar
haileyschoelkopf committed
18
def parse_eval_args() -> argparse.Namespace:
lintangsutawika's avatar
lintangsutawika committed
19
    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
20
    parser.add_argument("--model", required=True, help="Name of model e.g. `hf`")
lintangsutawika's avatar
lintangsutawika committed
21
22
23
24
25
    parser.add_argument(
        "--tasks",
        default=None,
        help="Available Tasks:\n - {}".format("\n - ".join(sorted(ALL_TASKS))),
    )
26
27
28
29
30
    parser.add_argument(
        "--model_args",
        default="",
        help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
    )
lintangsutawika's avatar
lintangsutawika committed
31
    parser.add_argument(
32
33
        "--num_fewshot",
        type=int,
34
        default=None,
35
36
        help="Number of examples in few-shot context",
    )
lintangsutawika's avatar
lintangsutawika committed
37
    parser.add_argument("--batch_size", type=str, default=1)
lintangsutawika's avatar
lintangsutawika committed
38
39
40
41
42
43
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=None,
        help="Maximal batch size to try with --batch_size auto",
    )
44
45
46
47
48
49
50
51
52
53
54
    parser.add_argument(
        "--device",
        type=str,
        default=None,
        help="Device to use (e.g. cuda, cuda:0, cpu)",
    )
    parser.add_argument(
        "--output_path",
        default=None,
        type=str,
        metavar="= [dir/file.jsonl] [DIR]",
55
        help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
56
    )
lintangsutawika's avatar
lintangsutawika committed
57
58
59
60
61
62
63
    parser.add_argument(
        "--limit",
        type=float,
        default=None,
        help="Limit the number of examples per task. "
        "If <1, limit is a percentage of the total number of examples.",
    )
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    parser.add_argument(
        "--use_cache",
        type=str,
        default=None,
        help="A path to a sqlite db file for caching model responses. `None` if not caching.",
    )
    parser.add_argument("--decontamination_ngrams_path", default=None)  # TODO: not used
    parser.add_argument(
        "--check_integrity",
        action="store_true",
        help="Whether to run the relevant part of the test suite for the tasks",
    )
    parser.add_argument(
        "--write_out",
        action="store_true",
        default=False,
        help="Prints the prompt for the first few documents",
    )
    parser.add_argument(
        "--log_samples",
        action="store_true",
        default=False,
        help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis",
    )
88
89
90
91
92
93
    parser.add_argument(
        "--show_config",
        action="store_true",
        default=False,
        help="If True, shows the the full config of all tasks at the end of the evaluation.",
    )
94
95
96
97
98
99
    parser.add_argument(
        "--include_path",
        type=str,
        default=None,
        help="Additional path to include if there are external tasks to include.",
    )
Jason Phang's avatar
Jason Phang committed
100
101
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
102

haileyschoelkopf's avatar
haileyschoelkopf committed
103
104
105
106
107
108
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
    if not args:
        # we allow for args to be passed externally, else we parse them ourselves
        args = parse_eval_args()

    os.environ["TOKENIZERS_PARALLELISM"] = "false"
Fabrizio Milo's avatar
Fabrizio Milo committed
109

Leo Gao's avatar
Leo Gao committed
110
    if args.limit:
lintangsutawika's avatar
lintangsutawika committed
111
112
113
        eval_logger.warning(
            " --limit SHOULD ONLY BE USED FOR TESTING."
            "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
Fabrizio Milo's avatar
Fabrizio Milo committed
114
        )
Leo Gao's avatar
Leo Gao committed
115

lintangsutawika's avatar
lintangsutawika committed
116
117
    if args.include_path is not None:
        eval_logger.info(f"Including path: {args.include_path}")
118
        include_path(args.include_path)
lintangsutawika's avatar
lintangsutawika committed
119

120
    if args.tasks is None:
121
        task_names = ALL_TASKS
Jason Phang's avatar
Jason Phang committed
122
    else:
123
124
        if os.path.isdir(args.tasks):
            import glob
125
126

            task_names = []
127
128
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
129
                config = utils.load_yaml_config(yaml_file)
130
131
                task_names.append(config)
        else:
132
            tasks_list = args.tasks.split(",")
133
            task_names = utils.pattern_match(tasks_list, ALL_TASKS)
134
135
            for task in [task for task in tasks_list if task not in task_names]:
                if os.path.isfile(task):
lintangsutawika's avatar
lintangsutawika committed
136
                    config = utils.load_yaml_config(task)
137
                    task_names.append(config)
baberabb's avatar
baberabb committed
138
            task_missing = [task for task in tasks_list if task not in task_names]
lintangsutawika's avatar
lintangsutawika committed
139

baberabb's avatar
baberabb committed
140
141
142
143
144
145
146
147
148
            if task_missing:
                missing = ", ".join(task_missing)
                eval_logger.error(
                    f"Tasks were not found: {missing}\n"
                    f"{SPACING}Try `lm-eval -h` for list of available tasks",
                )
                raise ValueError(
                    f"Tasks {missing} were not found. Try `lm-eval -h` for list of available tasks."
                )
lintangsutawika's avatar
lintangsutawika committed
149

150
151
    if args.output_path:
        path = Path(args.output_path)
Lintang Sutawika's avatar
Lintang Sutawika committed
152
        # check if file or 'dir/results.json' exists
baberabb's avatar
baberabb committed
153
        if path.is_file() or Path(args.output_path).joinpath("results.json").is_file():
154
155
156
            eval_logger.warning(
                f"File already exists at {path}. Results will be overwritten."
            )
lintangsutawika's avatar
lintangsutawika committed
157
            output_path_file = path.joinpath("results.json")
158
159
160
161
162
163
164
165
166
            assert not path.is_file(), "File already exists"
        # if path json then get parent dir
        elif path.suffix in (".json", ".jsonl"):
            output_path_file = path
            path.parent.mkdir(parents=True, exist_ok=True)
            path = path.parent
        else:
            path.mkdir(parents=True, exist_ok=True)
            output_path_file = path.joinpath("results.json")
167
168
    elif args.log_samples and not args.output_path:
        assert args.output_path, "Specify --output_path"
169

lintangsutawika's avatar
lintangsutawika committed
170
    eval_logger.info(f"Selected Tasks: {task_names}")
171

172
173
174
175
176
177
    results = evaluator.simple_evaluate(
        model=args.model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
178
        max_batch_size=args.max_batch_size,
179
        device=args.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
180
        use_cache=args.use_cache,
181
182
183
        limit=args.limit,
        decontamination_ngrams_path=args.decontamination_ngrams_path,
        check_integrity=args.check_integrity,
184
        write_out=args.write_out,
185
        log_samples=args.log_samples,
186
    )
187

188
    if results is not None:
189
190
        if args.log_samples:
            samples = results.pop("samples")
191
        dumped = json.dumps(results, indent=2, default=lambda o: str(o))
192
193
        if args.show_config:
            print(dumped)
194

195
196
        batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))

197
        if args.output_path:
198
            output_path_file.open("w").write(dumped)
199

200
201
202
            if args.log_samples:
                for task_name, config in results["configs"].items():
                    output_name = "{}_{}".format(
lintangsutawika's avatar
lintangsutawika committed
203
                        re.sub("/|=", "__", args.model_args), task_name
lintangsutawika's avatar
lintangsutawika committed
204
                    )
205
                    filename = path.joinpath(f"{output_name}.jsonl")
206
207
208

                    with jsonlines.open(filename, "w") as f:
                        f.write_all(samples[task_name])
lintangsutawika's avatar
lintangsutawika committed
209

210
        print(
211
212
            f"{args.model} ({args.model_args}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
            f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
213
214
        )
        print(evaluator.make_table(results))
lintangsutawika's avatar
lintangsutawika committed
215
216
        if "groups" in results:
            print(evaluator.make_table(results, "groups"))
Jason Phang's avatar
lib  
Jason Phang committed
217

218

Jason Phang's avatar
Jason Phang committed
219
if __name__ == "__main__":
haileyschoelkopf's avatar
haileyschoelkopf committed
220
    cli_evaluate()