__main__.py 7.4 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import os
lintangsutawika's avatar
lintangsutawika committed
2
import re
Jason Phang's avatar
Jason Phang committed
3
import json
4
import fnmatch
lintangsutawika's avatar
lintangsutawika committed
5
import jsonlines
lintangsutawika's avatar
lintangsutawika committed
6
import argparse
FarzanehNakhaee's avatar
FarzanehNakhaee committed
7
import logging
8
from pathlib import Path
Leo Gao's avatar
Leo Gao committed
9

10
from lm_eval import evaluator, utils
11
from lm_eval.api.registry import ALL_TASKS
lintangsutawika's avatar
lintangsutawika committed
12
from lm_eval.logger import eval_logger, SPACING
13
from lm_eval.tasks import include_path
lintangsutawika's avatar
format  
lintangsutawika committed
14

haileyschoelkopf's avatar
haileyschoelkopf committed
15
from typing import Union
16

Fabrizio Milo's avatar
Fabrizio Milo committed
17

haileyschoelkopf's avatar
haileyschoelkopf committed
18
def parse_eval_args() -> argparse.Namespace:
lintangsutawika's avatar
lintangsutawika committed
19
    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
20
    parser.add_argument("--model", required=True, help="Name of model e.g. `hf`")
lintangsutawika's avatar
lintangsutawika committed
21
22
23
24
25
    parser.add_argument(
        "--tasks",
        default=None,
        help="Available Tasks:\n - {}".format("\n - ".join(sorted(ALL_TASKS))),
    )
26
27
28
29
30
    parser.add_argument(
        "--model_args",
        default="",
        help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
    )
lintangsutawika's avatar
lintangsutawika committed
31
    parser.add_argument(
32
33
        "--num_fewshot",
        type=int,
34
        default=None,
35
36
        help="Number of examples in few-shot context",
    )
lintangsutawika's avatar
lintangsutawika committed
37
    parser.add_argument("--batch_size", type=str, default=1)
lintangsutawika's avatar
lintangsutawika committed
38
39
40
41
42
43
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=None,
        help="Maximal batch size to try with --batch_size auto",
    )
44
45
46
47
48
49
50
51
52
53
54
    parser.add_argument(
        "--device",
        type=str,
        default=None,
        help="Device to use (e.g. cuda, cuda:0, cpu)",
    )
    parser.add_argument(
        "--output_path",
        default=None,
        type=str,
        metavar="= [dir/file.jsonl] [DIR]",
55
        help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
56
    )
lintangsutawika's avatar
lintangsutawika committed
57
58
59
60
61
62
63
    parser.add_argument(
        "--limit",
        type=float,
        default=None,
        help="Limit the number of examples per task. "
        "If <1, limit is a percentage of the total number of examples.",
    )
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    parser.add_argument(
        "--use_cache",
        type=str,
        default=None,
        help="A path to a sqlite db file for caching model responses. `None` if not caching.",
    )
    parser.add_argument("--decontamination_ngrams_path", default=None)  # TODO: not used
    parser.add_argument(
        "--check_integrity",
        action="store_true",
        help="Whether to run the relevant part of the test suite for the tasks",
    )
    parser.add_argument(
        "--write_out",
        action="store_true",
        default=False,
        help="Prints the prompt for the first few documents",
    )
    parser.add_argument(
        "--log_samples",
        action="store_true",
        default=False,
        help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis",
    )
88
89
90
91
92
93
    parser.add_argument(
        "--show_config",
        action="store_true",
        default=False,
        help="If True, shows the the full config of all tasks at the end of the evaluation.",
    )
94
95
96
97
98
99
    parser.add_argument(
        "--include_path",
        type=str,
        default=None,
        help="Additional path to include if there are external tasks to include.",
    )
Jason Phang's avatar
Jason Phang committed
100
101
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
102

haileyschoelkopf's avatar
haileyschoelkopf committed
103
104
105
106
107
108
109
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:

    if not args:
        # we allow for args to be passed externally, else we parse them ourselves
        args = parse_eval_args()

    os.environ["TOKENIZERS_PARALLELISM"] = "false"
Fabrizio Milo's avatar
Fabrizio Milo committed
110

Leo Gao's avatar
Leo Gao committed
111
    if args.limit:
lintangsutawika's avatar
lintangsutawika committed
112
113
114
        eval_logger.warning(
            " --limit SHOULD ONLY BE USED FOR TESTING."
            "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
Fabrizio Milo's avatar
Fabrizio Milo committed
115
        )
Leo Gao's avatar
Leo Gao committed
116

lintangsutawika's avatar
lintangsutawika committed
117
118
    if args.include_path is not None:
        eval_logger.info(f"Including path: {args.include_path}")
119
        include_path(args.include_path)
lintangsutawika's avatar
lintangsutawika committed
120

121
    if args.tasks is None:
122
        task_names = ALL_TASKS
Jason Phang's avatar
Jason Phang committed
123
    else:
124
125
        if os.path.isdir(args.tasks):
            import glob
126
127

            task_names = []
128
129
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
130
                config = utils.load_yaml_config(yaml_file)
131
132
                task_names.append(config)
        else:
133
            tasks_list = args.tasks.split(",")
134
            task_names = utils.pattern_match(tasks_list, ALL_TASKS)
135
            task_missing = []
136
137
            for task in [task for task in tasks_list if task not in task_names]:
                if os.path.isfile(task):
lintangsutawika's avatar
lintangsutawika committed
138
                    config = utils.load_yaml_config(task)
139
                    task_names.append(config)
lintangsutawika's avatar
lintangsutawika committed
140

141
        if task_missing != []:
lintangsutawika's avatar
lintangsutawika committed
142
            missing = ", ".join(task_missing)
lintangsutawika's avatar
lintangsutawika committed
143
            eval_logger.error(
lintangsutawika's avatar
lintangsutawika committed
144
145
                f"Tasks were not found: {missing}\n"
                f"{SPACING}Try `lm-eval -h` for list of available tasks",
lintangsutawika's avatar
lintangsutawika committed
146
            )
lintangsutawika's avatar
lintangsutawika committed
147
148
            raise ValueError(f"Tasks {missing} were not found.")

149
150
    if args.output_path:
        path = Path(args.output_path)
Lintang Sutawika's avatar
Lintang Sutawika committed
151
        # check if file or 'dir/results.json' exists
baberabb's avatar
baberabb committed
152
        if path.is_file() or Path(args.output_path).joinpath("results.json").is_file():
153
154
155
            eval_logger.warning(
                f"File already exists at {path}. Results will be overwritten."
            )
lintangsutawika's avatar
lintangsutawika committed
156
            output_path_file = path.joinpath("results.json")
157
158
159
160
161
162
163
164
165
            assert not path.is_file(), "File already exists"
        # if path json then get parent dir
        elif path.suffix in (".json", ".jsonl"):
            output_path_file = path
            path.parent.mkdir(parents=True, exist_ok=True)
            path = path.parent
        else:
            path.mkdir(parents=True, exist_ok=True)
            output_path_file = path.joinpath("results.json")
166
167
    elif args.log_samples and not args.output_path:
        assert args.output_path, "Specify --output_path"
168

lintangsutawika's avatar
lintangsutawika committed
169
    eval_logger.info(f"Selected Tasks: {task_names}")
170

171
172
173
174
175
176
    results = evaluator.simple_evaluate(
        model=args.model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
177
        max_batch_size=args.max_batch_size,
178
        device=args.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
179
        use_cache=args.use_cache,
180
181
182
        limit=args.limit,
        decontamination_ngrams_path=args.decontamination_ngrams_path,
        check_integrity=args.check_integrity,
183
        write_out=args.write_out,
184
        log_samples=args.log_samples,
185
    )
186

187
    if results is not None:
188
189
        if args.log_samples:
            samples = results.pop("samples")
190
        dumped = json.dumps(results, indent=2, default=lambda o: str(o))
191
192
        if args.show_config:
            print(dumped)
193

194
195
        batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))

196
        if args.output_path:
197
            output_path_file.open("w").write(dumped)
198

199
200
201
            if args.log_samples:
                for task_name, config in results["configs"].items():
                    output_name = "{}_{}".format(
lintangsutawika's avatar
lintangsutawika committed
202
                        re.sub("/|=", "__", args.model_args), task_name
lintangsutawika's avatar
lintangsutawika committed
203
                    )
204
                    filename = path.joinpath(f"{output_name}.jsonl")
205
206
207

                    with jsonlines.open(filename, "w") as f:
                        f.write_all(samples[task_name])
lintangsutawika's avatar
lintangsutawika committed
208

209
        print(
210
211
            f"{args.model} ({args.model_args}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
            f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
212
213
        )
        print(evaluator.make_table(results))
lintangsutawika's avatar
lintangsutawika committed
214
215
        if "groups" in results:
            print(evaluator.make_table(results, "groups"))
Jason Phang's avatar
lib  
Jason Phang committed
216

217

Jason Phang's avatar
Jason Phang committed
218
if __name__ == "__main__":
haileyschoelkopf's avatar
haileyschoelkopf committed
219
    cli_evaluate()