vllm_causallms.py 18.6 KB
Newer Older
1
import copy
Baber Abbasi's avatar
Baber Abbasi committed
2
from importlib.metadata import version
3
4
5
from importlib.util import find_spec
from typing import List, Literal, Optional, Tuple, Union

6
from more_itertools import distribute
Baber Abbasi's avatar
Baber Abbasi committed
7
from packaging.version import parse as parse_version
8
9
from tqdm import tqdm

baberabb's avatar
baberabb committed
10
from lm_eval.api.instance import Instance
11
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
12
from lm_eval.api.registry import register_model
13
from lm_eval.models.utils import Collator, undistribute
14
15
16
17
18
from lm_eval.utils import (
    eval_logger,
    get_rolling_token_windows,
    make_disjoint_window,
)
19

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
20

21
try:
22
    import ray
23
    from vllm import LLM, SamplingParams
baberabb's avatar
baberabb committed
24
    from vllm.transformers_utils.tokenizer import get_tokenizer
25
26
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
27

28
eval_logger = eval_logger
baberabb's avatar
baberabb committed
29

baberabb's avatar
baberabb committed
30
31

@register_model("vllm")
32
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
33
34
35
36
37
38
39
40
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained="gpt2",
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
41
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
42
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
43
        tokenizer_revision: Optional[str] = None,
44
        add_bos_token: Optional[bool] = False,
45
        prefix_token_id: Optional[int] = None,
baberabb's avatar
baberabb committed
46
        tensor_parallel_size: int = 1,
47
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
48
49
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
50
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
51
        max_batch_size=None,
baberabb's avatar
baberabb committed
52
        max_length: int = None,
53
        max_model_len: int = None,
baberabb's avatar
baberabb committed
54
        seed: int = 1234,
55
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
56
        device: str = "cuda",
57
        data_parallel_size: int = 1,
Baber Abbasi's avatar
Baber Abbasi committed
58
        **kwargs,
baberabb's avatar
baberabb committed
59
60
    ):
        super().__init__()
61

62
        if not find_spec("vllm"):
63
            raise Exception(
64
65
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
66
67
            )

baberabb's avatar
baberabb committed
68
        assert "cuda" in device or device is None, "vLLM only supports CUDA"
69
70
71
72
73
        assert (
            max_length is None or max_model_len is None
        ), "Either max_length or max_model_len may be provided, but not both"

        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
74
        self.tensor_parallel_size = int(tensor_parallel_size)
75
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
76
77
78
79
80
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
81
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
82
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
83
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
84
85
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
86
            "max_model_len": int(self._max_length) if self._max_length else None,
baberabb's avatar
baberabb committed
87
88
89
90
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
        }
Baber Abbasi's avatar
Baber Abbasi committed
91
        self.model_args.update(kwargs)
92
93
94
95
96
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
            else batch_size
        )
97
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
98
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
99
        else:
Baber Abbasi's avatar
Baber Abbasi committed
100
101
102
103
104
105
            assert parse_version(version("vllm")) < parse_version(
                "0.3.3"
            ), "data_parallel is only compatible with vllm < v0.3.3."
            eval_logger.warning(
                "You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
            )
baberabb's avatar
baberabb committed
106
            self.model_args["worker_use_ray"] = True
107
108
109
110
111
112
113
114
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

            from transformers import AutoConfig

            self._config = AutoConfig.from_pretrained(
                pretrained, trust_remote_code=trust_remote_code, revision=revision
            )
baberabb's avatar
nits  
baberabb committed
115
116
117
118
119
120
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
        )
121
        self.add_bos_token = add_bos_token
122
123
124
125
126
        self.custom_prefix_token_id = prefix_token_id
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
127

baberabb's avatar
baberabb committed
128
129
130
131
132
133
134
        self._max_gen_toks = max_gen_toks

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

135
136
137
138
139
140
141
142
143
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

baberabb's avatar
baberabb committed
144
145
146
147
    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
148
149
150
151
152
153
154
155
156
157
158
159
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
160
161
162
163
164

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

baberabb's avatar
baberabb committed
165
166
167
168
    def tok_encode(
        self,
        string: str,
        left_truncate_len=None,
169
        add_special_tokens=None,
baberabb's avatar
baberabb committed
170
171
        truncation=False,
    ):
baberabb's avatar
baberabb committed
172
        """ """
173
174
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
baberabb's avatar
baberabb committed
175
176
177
        encoding = self.tokenizer.encode(
            string, add_special_tokens=add_special_tokens, truncation=truncation
        )
baberabb's avatar
baberabb committed
178
179
180
181
182
183
184
185
186

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
187
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
188
189
190
191
192
193
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
194
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
195
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
196
        else:
baberabb's avatar
baberabb committed
197
            sampling_params = SamplingParams(
198
                temperature=0, prompt_logprobs=1, max_tokens=1
baberabb's avatar
baberabb committed
199
            )
200
        if self.data_parallel_size > 1:
Baber Abbasi's avatar
Baber Abbasi committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            # vLLM hangs if tensor_parallel > 1 and resources are set in ray.remote
            # also seems to only work with decorator and not with ray.remote() fn
            # see https://github.com/vllm-project/vllm/issues/973
            # note: this has changed on 0.3.3, and it only works now if num_gpus are set.
            # but then tensor_parallel breaks
            @ray.remote
            def run_inference_one_model(
                model_args: dict, sampling_params, requests: List[List[int]]
            ):
                llm = LLM(**model_args)
                return llm.generate(
                    prompt_token_ids=requests, sampling_params=sampling_params
                )

215
216
217
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
Baber Abbasi's avatar
Baber Abbasi committed
218
219
220
            inputs = ((self.model_args, sampling_params, req) for req in requests)
            object_refs = [run_inference_one_model.remote(*x) for x in inputs]
            results = ray.get(object_refs)
221
222
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
223
            # flatten results
224
            return undistribute(results)
baberabb's avatar
baberabb committed
225
226
227
228

        outputs = self.model.generate(
            prompt_token_ids=requests,
            sampling_params=sampling_params,
229
            use_tqdm=True if self.batch_size == "auto" else False,
baberabb's avatar
baberabb committed
230
        )
baberabb's avatar
baberabb committed
231
232
        return outputs

233
234
235
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
baberabb's avatar
baberabb committed
236
237
        loglikelihoods = []

238
        for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
baberabb's avatar
baberabb committed
239
240
            rolling_token_windows = list(
                map(
241
242
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
243
244
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
baberabb's avatar
baberabb committed
245
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

264
265
266
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
267
        res = []
baberabb's avatar
baberabb committed
268
269
270

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
271
        context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
baberabb's avatar
baberabb committed
272
273
274
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
275
276
277
278
279
280
281
282

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
283
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
284
285
286
287

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
288
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
289
290
291
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
292

293
294
        pbar = tqdm(
            total=len(requests),
295
            disable=(disable_tqdm or (self.rank != 0)),
296
297
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
298
        # for each different set of kwargs, we execute all requests, by batch.
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [until]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
baberabb's avatar
baberabb committed
320
                )
321
            # add EOS token to stop sequences
Baber Abbasi's avatar
Baber Abbasi committed
322
            eos = self.tokenizer.decode(self.eot_token_id)
323
            if not until:
324
325
326
                until = [eos]
            else:
                until.append(eos)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
345

346
347
348
349
350
351
352
353
            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.outputs[0].text
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
354
355

        pbar.close()
356
357
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
358
359

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
360
361
362
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
363
364
365
366
367
368
369
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

370
371
372
373
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
374
        )
375

376
377
378
379
380
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
381
        for chunk in chunks:
382
            inputs = []
baberabb's avatar
baberabb committed
383
384
385
386
387
388
389
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

390
                inputs.append(inp)
baberabb's avatar
baberabb committed
391
392
                ctxlens.append(ctxlen)

393
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
394

395
396
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
397
398
            ):
                answer = self._parse_logprobs(
399
400
401
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
402
403
404
405
406
407
408
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
409
                pbar.update(1)
baberabb's avatar
baberabb committed
410
411
412
413
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
414
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
415
416
417
        """Process logprobs and tokens.

        :param tokens: list
418
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
419
        :param outputs: RequestOutput
420
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
421
422
423
424
425
426
427
428
429
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

430
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
431
432
        continuation_logprobs_dicts = outputs.prompt_logprobs

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

baberabb's avatar
baberabb committed
453
        # Calculate continuation_logprobs
454
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
455
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
456
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
457
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
458
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
459
460
461
462
463
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
464
465
466
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
467
468
469
470
471
472
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
473
474

        return continuation_logprobs, is_greedy
475
476
477
478

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
479
480
        do_sample = kwargs.pop("do_sample", None)
        if do_sample is False or "temperature" not in kwargs:
481
482
483
484
485
486
487
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs