task.py 31.4 KB
Newer Older
1
2
3
4
import abc
from dataclasses import dataclass

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
21
from lm_eval.api.metrics import (
lintangsutawika's avatar
lintangsutawika committed
22
23
24
25
26
27
28
29
30
    METRIC_REGISTRY,
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
    get_metric,
    get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
31

lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.logger import eval_logger
33
from lm_eval.prompts import get_prompt
34
35
36
37
from lm_eval.filters import build_filter_ensemble


@dataclass
38
class TaskConfig(dict):
39

40
41
    task: str = None
    group: str = None
42
    names: str = None
lintangsutawika's avatar
lintangsutawika committed
43
    reference: str = None
lintangsutawika's avatar
lintangsutawika committed
44
45
46
    task_name: str = (
        None  # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
    )
lintangsutawika's avatar
lintangsutawika committed
47
    base_task: str = None
48
49
50
51
52
    dataset_path: str = None
    dataset_name: str = None
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
53
54
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)

55
    template_aliases: str = None
56
57
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
58
59
60

    num_fewshot: int = 0
    batch_size: int = 1
61
62
    repeats: int = 1

63
64
65
66
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
    delimiter: str = "\n\n"
lintangsutawika's avatar
lintangsutawika committed
67
    filter_list: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
68
69
70
    normalization: str = (
        None  # TODO: add length-normalization of various types, mutual info
    )
71
72
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
73
    use_prompt: str = None
74

lintangsutawika's avatar
lintangsutawika committed
75
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
76

77
78
79
80
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
lintangsutawika's avatar
lintangsutawika committed
81
        if self.template_aliases is not None:
82
83
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
84

85
86
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
87

88
89
90
91
        # set "task_name" metadata field based on the "primary" name set
        if self.names:
            self.task_name = self.names[0]

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
107

108
109
110
111
112
113
114
115
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
151
        self._config = TaskConfig(**config) if config else TaskConfig()
152
153
154

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
155
156
157
            for name, components in self._config.get(
                "filters", [["none", ["take_first"]]]
            ):
158
159
160
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
161
162
163
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

234
235
236
237
238
239
240
241
242
243
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
244
            eval_logger.warning(
245
                "has_training_docs and has_validation_docs are False"
lintangsutawika's avatar
lintangsutawika committed
246
                "using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
247
            )
248
249
            return self.test_docs()

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

    def build_all_requests(self, limit=None):
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
lintangsutawika's avatar
lintangsutawika committed
300
301
302
        for doc_id, doc in enumerate(
            itertools.islice(docs, 0, limit) if limit else docs
        ):
303
304
305
306
307
            # sample fewshot context
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
308
309
310
311
312
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
                metadata=(self._config["task_name"], doc_id, self._config.repeats),
            )
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
338
            The number of times each instance in a dataset is inferred on. Defaults to 1,
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
374
375
376
377
378
379
380
381
382
383
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:
406
            labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)
407
408

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
            # if self.has_training_docs():
            #     fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            # else:
            #     if self._fewshot_docs is None:
            #         self._fewshot_docs = list(
            #             self.validation_docs()
            #             if self.has_validation_docs()
            #             else self.test_docs()
            #         )

            #     fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

            #     # get rid of the doc that's the one we're evaluating, if it's in the fewshot
            #     fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            # labeled_examples = (
            #     "\n\n".join(
            #         [
            #             self.doc_to_text(doc) + self.doc_to_target(doc)
            #             for doc in fewshotex
            #         ]
            #     )
            #     + "\n\n"
            # )
433
434
435
436
437
438
439
440
441
442
443
444
445

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

        for f in self._filters:
            f.apply(self._instances)


class ConfigurableTask(Task):

    VERSION = "2.0"
446
    OUTPUT_TYPE = None
447
    CONFIG = None
448
449

    def __init__(
lintangsutawika's avatar
lintangsutawika committed
450
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
451
    ):
452
        # Get pre-configured attributes
453
        self._config = self.CONFIG
454
455
456

        # Use new configurations if there was no preconfiguration
        if self._config is None:
457
            self._config = TaskConfig(**config)
458
459
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
460
            if config is not None:
461
                self._config.__dict__.update(config)
462

463
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
464
465
466
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
467
468
469
470

        if self._config.output_type is not None:
            self.OUTPUT_TYPE = self._config.output_type

471
472
473
474
475
476
477
478
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

        if self._config.metric_list is not None:
            self._metric_list = {}
479
            self._metric_kwargs = {}
480
481
            self._aggregation_list = {}
            self._higher_is_better = {}
lintangsutawika's avatar
lintangsutawika committed
482
            for metric_config in self._config.metric_list:
483

lintangsutawika's avatar
lintangsutawika committed
484
485
486
487
488
489
490
491
                metric_name = metric_config["metric"]
                aggregation = metric_config["aggregation"]
                higher_is_better = metric_config["higher_is_better"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
492

lintangsutawika's avatar
lintangsutawika committed
493
                self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
haileyschoelkopf's avatar
haileyschoelkopf committed
494

lintangsutawika's avatar
lintangsutawika committed
495
496
                if metric_name in METRIC_REGISTRY.keys():
                    self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
497
498
499
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
                    ]
lintangsutawika's avatar
lintangsutawika committed
500
                else:
501
                    self._higher_is_better[metric_name] = higher_is_better
lintangsutawika's avatar
lintangsutawika committed
502
503
504
505
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_list[metric_name] = metric_object
                        self._metric_kwargs[metric_name] = kwargs
haileyschoelkopf's avatar
haileyschoelkopf committed
506

lintangsutawika's avatar
lintangsutawika committed
507
                    except Exception:
lintangsutawika's avatar
lintangsutawika committed
508
509
510
511
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
512
513
514
515
516
517

        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None

        self._filters = []
lintangsutawika's avatar
lintangsutawika committed
518
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
519
520
521
522
523
524
525
526
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
527
528
529
530
                        }
                        components.append([function["function"], kwargs])

                    filter_pipeline = build_filter_ensemble(filter_name, components)
531
            self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
532
533
        else:
            self._filters = [
lintangsutawika's avatar
lintangsutawika committed
534
                build_filter_ensemble("take_first", [["take_first", None]])
lintangsutawika's avatar
lintangsutawika committed
535
            ]
536
537

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
538
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
539
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
540
541
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
542
543
544
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
545
546
547
548
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
            )  # TODO: pass the correct docs in here
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

580
    def fewshot_docs(self):
lintangsutawika's avatar
lintangsutawika committed
581
        if (self._config.num_fewshot > 0) and (self._config.fewshot_split is None):
lintangsutawika's avatar
lintangsutawika committed
582
            eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
583
                "num_fewshot > 0 but fewshot_split is None. "
lintangsutawika's avatar
lintangsutawika committed
584
                "using preconfigured rule."
lintangsutawika's avatar
lintangsutawika committed
585
            )
lintangsutawika's avatar
lintangsutawika committed
586
            return super().fewshot_docs()
lintangsutawika's avatar
lintangsutawika committed
587

lintangsutawika's avatar
lintangsutawika committed
588
        elif self._config.fewshot_split is not None:
589
590
            return self.dataset[self._config.fewshot_split]

591
592
593
594
595
596
597
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

598
599
600
601
602
603
604
605
606
607
608
609
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
610
611
612

        if self.prompt is not None:
            doc_to_text = self.prompt
613
614
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
615

616
617
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
618
        elif callable(doc_to_text):
619
620
621
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
622
        else:
623
            print(type(doc_to_text))
624
            raise TypeError
625
626

    def doc_to_target(self, doc):
627
628
629

        if self.prompt is not None:
            doc_to_target = self.prompt
630
631
632
        else:
            doc_to_target = self._config.doc_to_target

633
634
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
635
        elif callable(doc_to_target):
636
637
638
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
639
640
        else:
            raise TypeError
641
642
643

    def construct_requests(self, doc, ctx, **kwargs):

644
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
645
            arguments = (ctx, self.doc_to_target(doc))
646
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
647
            arguments = (self.doc_to_target(doc),)
648
        elif self.OUTPUT_TYPE == "multiple_choice":
649
650
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
651
652
653
654
655
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
656
            request_list = [
657
658
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
659
                    doc=doc,
660
                    arguments=(ctx, " {}".format(choice)),
661
                    idx=i,
662
663
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
664
                for i, choice in enumerate(choices)
665
            ]
666
667
668
669
670
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
671
                # here mutual info refers to calculating
672
673
674
675
676
677
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
678
                            doc=doc,
679
680
681
682
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
683
                        for i, choice in enumerate(choices)
684
685
686
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
687

688
        elif self.OUTPUT_TYPE == "greedy_until":
lintangsutawika's avatar
lintangsutawika committed
689
            arguments = (ctx, self._config.delimiter)
lintangsutawika's avatar
lintangsutawika committed
690
691

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
692
693
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
694
695
696
697

    def process_results(self, doc, results):

        result_dict = {}
698
699
700
701
702
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
            result_dict = {"perplexity": ll, "accuracy": int(is_greedy)}
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
703
704
705
706
707
708
709
710
            (loglikelihood,) = results
            words = self.count_words(self.doc_to_target(doc))
            bytes_ = self.count_bytes(self.doc_to_target(doc))
            return {
                "word_perplexity": (loglikelihood, words),
                "byte_perplexity": (loglikelihood, bytes_),
                "bits_per_byte": (loglikelihood, bytes_),
            }
711
        elif self.OUTPUT_TYPE == "multiple_choice":
lintangsutawika's avatar
lintangsutawika committed
712
713
714
            lls = [
                res[0] for res in results
            ]  # only retain loglikelihoods, discard is_greedy
haileyschoelkopf's avatar
haileyschoelkopf committed
715
            gold = int(self.doc_to_target(doc))
716
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
717
718
719
720
721
722
723
724
725
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
            if (
                2 * len(choices) == len(lls)
                and "acc_mutual_info" in self._metric_list.keys()
            ):
726
727
728
729
730
731
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
732
733

            acc = 1.0 if np.argmax(lls) == gold else 0.0
734
735
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
736
737
738
739

            result_dict = {
                "acc": acc,
                "acc_norm": acc_norm,
740
741
742
743
744
745
            }

            # TODO: set which normalization metrics should be reported, and calculate them

            if "exact_match" in self._metric_list.keys():
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
746
747
748
749
                is_greedy = [
                    res[1] for res in results
                ]  # take only the `is_greedy` results
                is_greedy = is_greedy[gold]  # take value for the gold answer
750
751
752
                result_dict["exact_match"] = int(is_greedy)

            if "acc_mutual_info" in self._metric_list.keys():
lintangsutawika's avatar
lintangsutawika committed
753
754
755
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
756
757
758
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

759
760
761
762
763
764
765
766
767
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
                gold = doc[self._config.gold_alias]
            else:
                gold = self.doc_to_target(doc)

            for key, result in zip(self._metric_list.keys(), results):
                _dict = self._metric_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
768
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
769
                )
770

771
                result_dict[key] = _dict[key]
772
        else:
lintangsutawika's avatar
lintangsutawika committed
773
774
775
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until'",
776
            )
777
778
779
780
781
782
783

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
784
        return self._higher_is_better
785
786
787
788
789
790
791
792
793
794


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
795
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
796
797
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
798
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
799
                doc=doc,
800
                arguments=(ctx, " {}".format(choice)),
801
                idx=i,
802
803
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
804
805
            for i, choice in enumerate(doc["choices"])
        ]
806
807

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
808
809
810
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
835
class PerplexityTask(Task):
836
837
838
839
840
841
842
843
844
845

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
846
    def fewshot_context(self, doc, num_fewshot, rnd=None):
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
875
876
877
878
879
880
881
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
882
883
884

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
885
886
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))