metrics.py 15 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import random
4
from collections.abc import Iterable
5
from typing import List
6

Baber Abbasi's avatar
Baber Abbasi committed
7
import evaluate as hf_evaluate
8
9
10
import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
11

12
from lm_eval.api.registry import register_aggregation, register_metric
13

lintangsutawika's avatar
lintangsutawika committed
14

15
eval_logger = logging.getLogger("lm-eval")
16

17

18
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
19
20
21
22
23
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


24
25
26
27
28
29
30
31
32
33
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


34
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
35
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
51
52
53
54
55
56
57
58
59
60
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


JessicaOjo's avatar
JessicaOjo committed
61
62
63
64
@register_aggregation("squad_f1")
def squad_f1_score(items):
    gold_squad, pred_squad = [], []
    for index, (ref, pred) in enumerate(items):
JessicaOjo's avatar
JessicaOjo committed
65
66
        pred_dict = {'prediction_text': str(pred), 'id': str(index)}
        ref_dict = {'answers': {'answer_start': [0], 'text': str(ref)}, 'id': str(index)}
JessicaOjo's avatar
JessicaOjo committed
67
68
69
70
71
72
73
74
        gold_squad.append(ref_dict)
        pred_squad.append(pred_dict)

    squad_metric = hf_evaluate.load("squad")
    results_squad = squad_metric.compute(predictions=pred_squad, references=gold_squad)
    return results_squad['f1']


haileyschoelkopf's avatar
haileyschoelkopf committed
75
76
77
78
79
80
81
82
83
@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
    gold = list(gold)
    gold_one_hot = np.eye(np.max(gold) + 1)[gold]
    predictions = list(zip(*items))[1]
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


152
153
154
155
156
157
158
159
160
161
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


162
163
164
165
166
167
168
169
170
171
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


172
173
174
175
176
177
178
179
180
181
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


Baber Abbasi's avatar
Baber Abbasi committed
182
exact_match = hf_evaluate.load("exact_match")
183
184


185
186
187
188
189
190
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
191
192
def exact_match_fn(**kwargs):
    return exact_match.compute(**kwargs)
193
194


JessicaOjo's avatar
JessicaOjo committed
195
196
197
198
199
200
201
202
203
204
@register_metric(
    metric="squad",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="squad_f1"
)
def squad_fn(items):
    return items


205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
244

Leo Gao's avatar
Leo Gao committed
245
def pop_stddev(arr):
246
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
247
248
249
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
250
def sample_stddev(arr):
251
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
252
253
254
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
255
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
256
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
257
258


Baber Abbasi's avatar
Baber Abbasi committed
259
260
261
262
263
264
265
266
267
268
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
269
270
271
272
273
274
275
276
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
277
278
279


@register_metric(
280
    metric="f1",
281
282
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
283
    aggregation="f1",
284
)
285
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
286
    return items
287
288


289
290
291
@register_metric(
    metric="bleu",
    higher_is_better=True,
292
    output_type="generate_until",
293
294
295
296
297
298
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


299
300
301
@register_metric(
    metric="chrf",
    higher_is_better=True,
302
    output_type="generate_until",
303
304
305
306
307
308
309
310
311
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
312
    output_type="generate_until",
313
314
315
316
317
318
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
361
362
363
364
365
366
367
368
369
370

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
411
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
412
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
413
414
        self.f = f
        self.n = n
415

Leo Gao's avatar
Leo Gao committed
416
417
418
419
420
421
422
423
424
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
425

426
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
427
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
428

Leo Gao's avatar
Leo Gao committed
429
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
430
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
431
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
432
433
434
435
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
436
    res = []
437
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
438
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
439

Leo Gao's avatar
Leo Gao committed
440
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
441
442
    for bootstrap in tqdm(
        pool.imap(
443
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
444
445
446
447
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
448
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
449
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
450

Leo Gao's avatar
Leo Gao committed
451
    pool.close()
Leo Gao's avatar
Leo Gao committed
452
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
453
454


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
472
473
474
475
476
477
478
479
480
481


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
482
483
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
484
485
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
486
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
487
488
    ) / (sum(sizes) - len(sizes))

489
    return np.sqrt(pooled_sample_var / sum(sizes))
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
    assert (
        metrics is not None
    ), "Need to pass a list of each subtask's metric for this stderr aggregation"
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
528
    if not weight_by_size:
529
530
531
532
533
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)