metrics.py 15 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import random
4
from collections.abc import Iterable
5
from typing import List
6

Baber Abbasi's avatar
Baber Abbasi committed
7
import evaluate as hf_evaluate
8
9
10
import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
11

12
from lm_eval.api.registry import register_aggregation, register_metric
13

lintangsutawika's avatar
lintangsutawika committed
14

15
eval_logger = logging.getLogger("lm-eval")
16

17

18
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
19
20
21
22
23
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


24
25
26
27
28
29
30
31
32
33
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


34
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
35
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
51
52
53
54
55
56
57
58
59
60
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


JessicaOjo's avatar
JessicaOjo committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@register_aggregation("squad_f1")
def squad_f1_score(items):

    gold_squad, pred_squad = [], []
    for index, (ref, pred) in enumerate(items):
        pred_dict = {'prediction_text': pred, 'id': str(index)}
        ref_dict = {'answers': {'answer_start': [0], 'text': [ref]}, 'id': str(index)}
        gold_squad.append(ref_dict)
        pred_squad.append(pred_dict)

    squad_metric = hf_evaluate.load("squad")
    results_squad = squad_metric.compute(predictions=pred_squad, references=gold_squad)
    return results_squad['f1']


haileyschoelkopf's avatar
haileyschoelkopf committed
76
77
78
79
80
81
82
83
84
@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
    gold = list(gold)
    gold_one_hot = np.eye(np.max(gold) + 1)[gold]
    predictions = list(zip(*items))[1]
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


153
154
155
156
157
158
159
160
161
162
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


163
164
165
166
167
168
169
170
171
172
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


173
174
175
176
177
178
179
180
181
182
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


Baber Abbasi's avatar
Baber Abbasi committed
183
exact_match = hf_evaluate.load("exact_match")
184
185


186
187
188
189
190
191
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
192
193
def exact_match_fn(**kwargs):
    return exact_match.compute(**kwargs)
194
195


JessicaOjo's avatar
JessicaOjo committed
196
197
198
199
200
201
202
203
204
205
@register_metric(
    metric="squad",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="squad_f1"
)
def squad_fn(items):
    return items


206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
245

Leo Gao's avatar
Leo Gao committed
246
def pop_stddev(arr):
247
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
248
249
250
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
251
def sample_stddev(arr):
252
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
253
254
255
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
256
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
257
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
258
259


Baber Abbasi's avatar
Baber Abbasi committed
260
261
262
263
264
265
266
267
268
269
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
270
271
272
273
274
275
276
277
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
278
279
280


@register_metric(
281
    metric="f1",
282
283
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
284
    aggregation="f1",
285
)
286
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
287
    return items
288
289


290
291
292
@register_metric(
    metric="bleu",
    higher_is_better=True,
293
    output_type="generate_until",
294
295
296
297
298
299
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


300
301
302
@register_metric(
    metric="chrf",
    higher_is_better=True,
303
    output_type="generate_until",
304
305
306
307
308
309
310
311
312
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
313
    output_type="generate_until",
314
315
316
317
318
319
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
362
363
364
365
366
367
368
369
370
371

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
412
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
413
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
414
415
        self.f = f
        self.n = n
416

Leo Gao's avatar
Leo Gao committed
417
418
419
420
421
422
423
424
425
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
426

427
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
428
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
429

Leo Gao's avatar
Leo Gao committed
430
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
431
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
432
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
433
434
435
436
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
437
    res = []
438
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
439
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
440

Leo Gao's avatar
Leo Gao committed
441
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
442
443
    for bootstrap in tqdm(
        pool.imap(
444
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
445
446
447
448
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
449
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
450
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
451

Leo Gao's avatar
Leo Gao committed
452
    pool.close()
Leo Gao's avatar
Leo Gao committed
453
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
454
455


456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
473
474
475
476
477
478
479
480
481
482


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
483
484
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
485
486
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
487
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
488
489
    ) / (sum(sizes) - len(sizes))

490
    return np.sqrt(pooled_sample_var / sum(sizes))
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
    assert (
        metrics is not None
    ), "Need to pass a list of each subtask's metric for this stderr aggregation"
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
529
    if not weight_by_size:
530
531
532
533
534
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)