task.py 30.1 KB
Newer Older
1
2
3
4
import abc
from dataclasses import dataclass

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
21
22
23
24
from lm_eval.api.metrics import (
    METRIC_REGISTRY, AGGREGATION_REGISTRY, HIGHER_IS_BETTER_REGISTRY,
    get_metric, get_aggregation, mean, weighted_perplexity, bits_per_byte
    )
25

lintangsutawika's avatar
lintangsutawika committed
26
from lm_eval.logger import eval_logger
27
from lm_eval.prompts import get_prompt
28
29
30
31
from lm_eval.filters import build_filter_ensemble


@dataclass
32
class TaskConfig(dict):
33

34
35
    task: str = None
    group: str = None
36
    names: str = None
lintangsutawika's avatar
lintangsutawika committed
37
    reference: str = None
38
    task_name: str = None # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
lintangsutawika's avatar
lintangsutawika committed
39
    base_task: str = None
40
41
42
43
44
45
46
    dataset_path: str = None
    dataset_name: str = None
    training_split: str = None
    validation_split: str = None
    test_split: str = None
    fewshot_split: str = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    
47
    template_aliases: str = None
48
49
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
50
51
52

    num_fewshot: int = 0
    batch_size: int = 1
53
54
    repeats: int = 1

55
56
57
58
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
    delimiter: str = "\n\n"
lintangsutawika's avatar
lintangsutawika committed
59
    filter_list: Union[str, list] = None
60
    normalization: str = None # TODO: add length-normalization of various types, mutual info
61
62
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
63
    use_prompt: str = None
64

65
66
    metadata: str = None # by default, not used in the code. allows for users to pass arbitrary info to tasks

67
68
69
70
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
71
72
73
        if self.template_aliases != None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
74

75
76
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
77

78
79
80
81
        # set "task_name" metadata field based on the "primary" name set
        if self.names:
            self.task_name = self.names[0]

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
140
        self._config = TaskConfig(**config) if config else TaskConfig()
141
142
143
144
145
146
147

        if not hasattr(self, "_filters"):
            self._filters = []
            for name, components in self._config.get("filters", [["none", ["take_first"]]]):
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

148
 
lintangsutawika's avatar
lintangsutawika committed
149
        self.sampler = samplers.Sampler(list(self.fewshot_docs()), self, rnd=random.Random()) # TODO: pass the correct docs in here
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

220
221
222
223
224
225
226
227
228
229
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
230
231
232
233
            eval_logger.warning(
                "has_training_docs and has_validation_docs are False",
                "using test_docs but this is not recommended."
                )
234
235
            return self.test_docs()

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

    def build_all_requests(self, limit=None):
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
        for doc_id, doc in enumerate(itertools.islice(docs, 0, limit) if limit else docs):
            # sample fewshot context
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
292
            inst = self.construct_requests(doc=doc, ctx=fewshot_ctx, metadata=(self._config["task_name"], doc_id, 1))
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)
            

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
            The number of times each instance in a dataset is inferred on. Defaults to 1, 
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
355
356
357
358
359
360
361
362
363
364
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:
387
            labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)
388
389

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
            # if self.has_training_docs():
            #     fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            # else:
            #     if self._fewshot_docs is None:
            #         self._fewshot_docs = list(
            #             self.validation_docs()
            #             if self.has_validation_docs()
            #             else self.test_docs()
            #         )

            #     fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

            #     # get rid of the doc that's the one we're evaluating, if it's in the fewshot
            #     fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            # labeled_examples = (
            #     "\n\n".join(
            #         [
            #             self.doc_to_text(doc) + self.doc_to_target(doc)
            #             for doc in fewshotex
            #         ]
            #     )
            #     + "\n\n"
            # )
414
415
416
417
418
419
420
421
422
423
424
425
426

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

        for f in self._filters:
            f.apply(self._instances)


class ConfigurableTask(Task):

    VERSION = "2.0"
427
    OUTPUT_TYPE = None
428
    CONFIG = None
429
430

    def __init__(
lintangsutawika's avatar
lintangsutawika committed
431
432
433
434
435
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: dict=None
436
    ):
437
        # Get pre-configured attributes
438
        self._config = self.CONFIG
439
440
441

        # Use new configurations if there was no preconfiguration
        if self._config is None:
442
            self._config = TaskConfig(**config)
443
444
        # Overwrite configs
        else:
445
446
            if config != None:
                self._config.__dict__.update(config)
447

448
449
        if self._config is None:
            raise ValueError("Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg") 
450
451
452
453

        if self._config.output_type is not None:
            self.OUTPUT_TYPE = self._config.output_type

454
455
456
457
458
459
460
461
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

        if self._config.metric_list is not None:
            self._metric_list = {}
462
            self._metric_kwargs = {}
463
464
            self._aggregation_list = {}
            self._higher_is_better = {}
lintangsutawika's avatar
lintangsutawika committed
465
            for metric_config in self._config.metric_list:
466

467
                metric_name = metric_config['metric']
lintangsutawika's avatar
lintangsutawika committed
468
469
                aggregation = metric_config['aggregation']
                higher_is_better = metric_config['higher_is_better']
470
                kwargs = {key: metric_config[key] for key in metric_config if key not in ['metric', 'aggregation', 'higher_is_better']}
471

lintangsutawika's avatar
lintangsutawika committed
472
                self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
haileyschoelkopf's avatar
haileyschoelkopf committed
473

lintangsutawika's avatar
lintangsutawika committed
474
475
                if metric_name in METRIC_REGISTRY.keys():
                    self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
476
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
477
                else:
478
                    self._higher_is_better[metric_name] = higher_is_better
lintangsutawika's avatar
lintangsutawika committed
479
480
481
482
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_list[metric_name] = metric_object
                        self._metric_kwargs[metric_name] = kwargs
haileyschoelkopf's avatar
haileyschoelkopf committed
483

lintangsutawika's avatar
lintangsutawika committed
484
485
486
487
488
                    except Exception as ex:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
489
490
491
492
493
494
495

        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None

        
        self._filters = []
lintangsutawika's avatar
lintangsutawika committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

        if self._config.filter_list != None:
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
                            }
                        components.append([
                            function['function'],
                            kwargs
                        ])

                    filter_pipeline = build_filter_ensemble(filter_name, components)
513
            self._filters.append(filter_pipeline)
514
        
lintangsutawika's avatar
lintangsutawika committed
515
516
        if self.fewshot_docs() != None:
            self.sampler = samplers.Sampler(list(self.fewshot_docs()), self, rnd=random.Random()) # TODO: pass the correct docs in here
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

548
    def fewshot_docs(self):
lintangsutawika's avatar
lintangsutawika committed
549
        if (self._config.num_fewshot > 0) and (self._config.fewshot_split == None):
lintangsutawika's avatar
lintangsutawika committed
550
551
552
553
554
555
            eval_logger.warning(
                "num_fewshot > 0 but fewshot_split is None",
                "using preconfigured rule."
                )
            return super().fewshot_docs()
        
556
557
558
        if self._config.fewshot_split:
            return self.dataset[self._config.fewshot_split]

559
560
561
562
563
564
565
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

566
567
568
569
570
571
572
573
574
575
576
577
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
578
579
580
581
        if self._config.use_prompt is not None:
            doc_to_text = get_prompt(self._config.use_prompt)
        else:
            doc_to_text = self._config.doc_to_text
582
583
584
        
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
585
        elif callable(doc_to_text):
586
587
588
            return doc_to_text(doc)
        else:
            raise TypeError
589
590

    def doc_to_target(self, doc):
591
592
593
        doc_to_target = self._config.doc_to_target
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
594
        elif callable(doc_to_target):
595
596
597
            return doc_to_target(doc)
        else:
            raise TypeError
598
599
600

    def construct_requests(self, doc, ctx, **kwargs):

601
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
602
            arguments=(ctx, self.doc_to_target(doc))
603
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
604
            arguments=(self.doc_to_target(doc),)
605
        elif self.OUTPUT_TYPE == "multiple_choice":
606
607
608
609
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
            choices = ast.literal_eval(utils.apply_template(self._config.template_aliases + "{{answer_choices}}", doc))
            request_list = [
610
611
612
613
                Instance(
                    request_type="loglikelihood",
                    doc=doc, 
                    arguments=(ctx, " {}".format(choice)),
614
                    idx=i,
615
616
                    **kwargs,
                )
617
                for i, choice in enumerate(choices) 
618
            ]
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating 
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
                            doc=doc, 
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
                        for i, choice in enumerate(choices) 
                    ]
                )
            return request_list
            
641
        elif self.OUTPUT_TYPE == "greedy_until":
642
            arguments=(ctx, self._config.delimiter)
lintangsutawika's avatar
lintangsutawika committed
643
644

        return Instance(
645
            request_type=self.OUTPUT_TYPE,
lintangsutawika's avatar
lintangsutawika committed
646
647
            doc=doc,
            arguments=arguments,
648
            idx=0,
lintangsutawika's avatar
lintangsutawika committed
649
650
            **kwargs
            )
651
652
653
654

    def process_results(self, doc, results):

        result_dict = {}
655
656
657
658
659
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
            result_dict = {"perplexity": ll, "accuracy": int(is_greedy)}
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
660
661
662
663
664
665
666
667
            (loglikelihood,) = results
            words = self.count_words(self.doc_to_target(doc))
            bytes_ = self.count_bytes(self.doc_to_target(doc))
            return {
                "word_perplexity": (loglikelihood, words),
                "byte_perplexity": (loglikelihood, bytes_),
                "bits_per_byte": (loglikelihood, bytes_),
            }
668
        elif self.OUTPUT_TYPE == "multiple_choice":
669
            lls = [res[0] for res in results] # only retain loglikelihoods, discard is_greedy
haileyschoelkopf's avatar
haileyschoelkopf committed
670
            gold = int(self.doc_to_target(doc))
671
672
673
674
675
676
677
678
679
            # retrieve choices in List[str] form, to compute choice lengths, etc.
            choices = ast.literal_eval(utils.apply_template(self._config.template_aliases + "{{answer_choices}}", doc))
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in self._metric_list.keys():
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
680
681

            acc = 1.0 if np.argmax(lls) == gold else 0.0
682
683
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
684
685
686
687

            result_dict = {
                "acc": acc,
                "acc_norm": acc_norm,
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
            }

            # TODO: set which normalization metrics should be reported, and calculate them

            if "exact_match" in self._metric_list.keys():
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                is_greedy = [res[1] for res in results] # take only the `is_greedy` results
                is_greedy = is_greedy[gold] # take value for the gold answer
                result_dict["exact_match"] = int(is_greedy)

            if "acc_mutual_info" in self._metric_list.keys():
                lls_mutual_info = [ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)]
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

703
704
705
706
707
708
709
710
711
712
713
714
715
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
                gold = doc[self._config.gold_alias]
            else:
                gold = self.doc_to_target(doc)

            for key, result in zip(self._metric_list.keys(), results):
                _dict = self._metric_list[key].compute(
                    references=[gold],
                    predictions=[result],
                    **self._metric_kwargs[key]
                )
716

717
                result_dict[key] = _dict[key]
718
719
720
721
        else:
            raise ValueError(f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ", 
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until'"
            )
722
723
724
725
726
727
728

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
729
        return self._higher_is_better
730
731
732
733
734
735
736
737
738
739


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
740
        # TODO: add mutual info here?
haileyschoelkopf's avatar
haileyschoelkopf committed
741
742
        return [Instance(
                request_type="loglikelihood",
743
744
                doc=doc, 
                arguments=(ctx, " {}".format(choice)),
745
                idx=i,
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
                **kwargs,
            )
            for i, choice in enumerate(doc["choices"])]

    def process_results(self, doc, results):
        results = [res[0] for res in results] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere? 
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
776
class PerplexityTask(Task):
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

    def fewshot_context(
        self, doc, num_fewshot, rnd=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

818
        return Instance(request_type=self.OUTPUT_TYPE, doc=doc, arguments=(self.doc_to_target(doc),), idx=0, **kwargs)
819
820
821

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
822
823
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))