huggingface.py 39.7 KB
Newer Older
1
2
import os

3
4
import torch
import transformers
5
6
7
8
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
9
from peft import __version__ as PEFT_VERSION, PeftModel
10
11

import copy
12
from collections import defaultdict
13
from tqdm import tqdm
14
from pathlib import Path
15
16
17
18
19
20
21
22
23

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

24
from accelerate import Accelerator, find_executable_batch_size, DistributedType
25
from typing import List, Optional, Union
26

27
eval_logger = utils.eval_logger
28

lintangsutawika's avatar
lintangsutawika committed
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
53
54


55
@register_model("hf-auto", "hf", "huggingface")
56
class HFLM(LM):
57
58
59
60
61
62
63
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

64
    AUTO_MODEL_CLASS = None
65
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
66

67
68
    def __init__(
        self,
69
70
71
72
        pretrained: Optional[str] = "gpt2",
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
        tokenizer: Optional[str] = None,
lintangsutawika's avatar
lintangsutawika committed
73
        truncation: Optional[bool] = False,
74
75
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
76
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
77
78
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
79
80
        low_cpu_mem_usage: Optional[bool] = True,
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
81
        use_fast_tokenizer: Optional[bool] = True,
lintangsutawika's avatar
lintangsutawika committed
82
        cache_dir: Optional[Union[str, os.PathLike]] = None,
83
        # arguments used for splitting a model across GPUs naively.
84
85
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
86
87
88
89
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
90
91
92
93
94
95
96
97
        # PEFT and quantization options
        peft: Optional[str] = None,
        load_in_8bit: Optional[bool] = False,
        load_in_4bit: Optional[bool] = False,
        bnb_4bit_quant_type: Optional[str] = None,
        bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
        gptq: Optional[Union[bool, str]] = False,
        gptq_use_triton: Optional[bool] = False,
Ethan Smith's avatar
Ethan Smith committed
98
    ) -> None:
99
100
101
102
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
Benjamin Fattori's avatar
Benjamin Fattori committed
103
        assert isinstance(batch_size, (int, str))
104
105

        gpus = torch.cuda.device_count()
106
        accelerator = Accelerator()
haileyschoelkopf's avatar
haileyschoelkopf committed
107

108
        if not (parallelize or accelerator.num_processes > 1):
109
            # use user-passed device
110
            device_list = set(
111
                ["cuda", "cpu"]
112
                + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
113
                + ["mps", "mps:0"]
114
            )
115
            if device:
116
                if device not in device_list:
117
118
119
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
120
                if device in ("mps", "mps:0") and "dev" not in torch.__version__:
121
                    eval_logger.info(
122
123
124
                        "MPS: Setting dtype to float32. To use float16 with MPS, please install a nightly build of "
                        "PyTorch: pip3 install --pre torch torchvision torchaudio --index-url "
                        "https://download.pytorch.org/whl/nightly/cpu"
125
                    )
126
127
128
129
130
131
132
133
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
134
        else:
135
136
137
138
            if device != "cuda":
                eval_logger.info(
                    f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                )
139
            # TODO: include in warning that `load_in_8bit` etc. affect this too
140
141
142
            self._device = device

        model_kwargs = {}
143
        if parallelize:
144
145
146
147
148
149
            model_kwargs = _get_accelerate_args(
                device_map_option,
                max_memory_per_gpu,
                max_cpu_memory,
                offload_folder,
            )
150
151
152
153
154
155
156

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
157
            trust_remote_code=trust_remote_code,
158
159
160
161
        )

        if getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
162
163
164
165
166
167
168
169
170
171
172
173
        elif (
            not getattr(self._config, "model_type")
            in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
        ):
            if not trust_remote_code:
                eval_logger.warning(
                    "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                )
            # if model type is neither in HF transformers causal or seq2seq model registries
            # then we default to AutoModelForCausalLM
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
174
        else:
haileyschoelkopf's avatar
haileyschoelkopf committed
175
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
176

haileyschoelkopf's avatar
haileyschoelkopf committed
177
178
179
180
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        if not gptq:
            if load_in_4bit:
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                model_kwargs["load_in_4bit"] = load_in_4bit
                if load_in_4bit:
                    if bnb_4bit_quant_type:
                        model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
                    if bnb_4bit_compute_dtype:
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            bnb_4bit_compute_dtype
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                load_in_8bit=load_in_8bit,
                **model_kwargs,
            )
        else:
gk's avatar
gk committed
206
207
208
209
210
211
212
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                model_basename=None if gptq is True else Path(gptq).stem,
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
                use_triton=gptq_use_triton,
                warmup_triton=gptq_use_triton,
                **model_kwargs,
            )

        if peft:
            if load_in_4bit:
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

232
        # forever after, access self._model through self.model property
233
        self.model.eval()
234
235
236
        self.model.tie_weights()
        if gpus <= 1 and not parallelize:
            # place model onto device, if not using HF Accelerate in any form
237
238
239
240
241
242
            try:
                self.model.to(self.device)
            except ValueError:
                eval_logger.info(
                    "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
243

244
245
246
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
247
            trust_remote_code=trust_remote_code,
haileyschoelkopf's avatar
haileyschoelkopf committed
248
            use_fast=use_fast_tokenizer,
249
250
        )

lintangsutawika's avatar
lintangsutawika committed
251
252
        self.truncation = truncation

253
        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
254
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
255

256
257
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
258
259
260
261
262
263
264
265
266
267
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
268
269
270
271
272
273
274
275
276
277
278

        # multigpu data-parallel support when launched with accelerate
        if gpus > 1:
            if parallelize:
                if accelerator.num_processes > 1:
                    raise RuntimeError(
                        "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                    )
                else:
                    pass
            elif gpus > accelerator.num_processes:
279
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
295
296
297
298
299
300
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.info(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                    )
301
            else:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
302
                assert accelerator.distributed_type in [
lintangsutawika's avatar
lintangsutawika committed
303
304
                    DistributedType.FSDP,
                    DistributedType.MULTI_GPU,
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
305
                ], "Unsupported distributed type provided. Only DDP and FSDP are supported."
306
                if accelerator.distributed_type == DistributedType.FSDP:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
307
                    self._model = accelerator.prepare(self.model)
308
309
                else:
                    self._model = accelerator.prepare_model(
lintangsutawika's avatar
lintangsutawika committed
310
                        self.model, evaluation_mode=True
311
                    )
312
313
314
315
316
317
318
319
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
320

321
322
323
324
325
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

326
327
328
329
330
331
332
333
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

334
335
336
337
338
339
340
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
341
342
343
344
345
346
347
348
349
350
351
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
352

353
    @property
Ethan Smith's avatar
Ethan Smith committed
354
    def max_gen_toks(self) -> int:
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

Ethan Smith's avatar
Ethan Smith committed
373
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
374
375
376
377
378
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
379
380
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
381
382
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
383

Benjamin Fattori's avatar
Benjamin Fattori committed
384
385
386
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
387
388
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
389
390
391
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
392
393
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
394
395
396
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
397
398
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
399
400
401
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
402
            for _ in range(5):
403
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
404
405
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
406
407
408
409
            return batch_size

        batch_size = forward_batch()

410
411
412
413
414
415
416
417
418
419
420
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
421
422
        return batch_size

423
    def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None):
haileyschoelkopf's avatar
haileyschoelkopf committed
424
        """ """
425
426
427
428
429
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                add_special_tokens = False
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                add_special_tokens = True
430
431

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
432

433
434
435
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
436

437
438
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
439
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
440
441
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
442
        padding_side: str = "left",
443
444
        left_truncate_len: int = None,
        truncation: bool = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
445
446
447
448
449
450
451
452
453
454
455
456
    ):
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
457
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
458
459
460
461
462
463
464
465
466
467
468
469
470
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

471
472
473
474
475
476
477
478
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
479
        :param inps: torch.Tensor
480
481
482
483
484
485
486
487
488
489
490
491
492
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
493
494
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
495
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
496
497
498
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
499
500
501
502
503
504
505
506
507
508
509
510
511
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
512
        return self.model.generate(
513
            input_ids=context,
514
515
516
517
518
519
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
520
521
522

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
523
524
525
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
526
527
528
529
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
530
531
532
533
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
534
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
535
536
            logits = logits[:contlen]

537
538
        return logits

539
540
541
542
543
    def _encode_pair(self, context, continuation):
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
544
545
546
547
548
549

        whole_enc = self.tok_encode(context + continuation, add_special_tokens=False)
        context_enc = self.tok_encode(context, add_special_tokens=False)

        # whole_enc = self.tok_encode(context + continuation)
        # context_enc = self.tok_encode(context, add_special_tokens=False)
550
551
552
553
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

554
555
556
557
558
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
559
560
561
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
562
            else:
563
                context_enc, continuation_enc = self._encode_pair(context, continuation)
564
565
566
567
568
569
570

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
571
572
573
574
575
576
577
578
579

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

580
581
582
583
584
585
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
586
                        prefix_token=self.eot_token_id,
587
588
589
590
591
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
592
593

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
609
610
611
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
612
613
614
615
616
617
618
619
620
621
622
623
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
624

625
626
627
628
629
630
631
632
633
634
635
636
637
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
638
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
639
640
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
641

Ethan Smith's avatar
Ethan Smith committed
642
643
644
    def _loglikelihood_tokens(
        self, requests, disable_tqdm: bool = False, override_bs=None
    ):
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
660
661
662
663

        n_reordered_requests = len(re_ord.get_reordered())
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
lintangsutawika's avatar
lintangsutawika committed
664

665
666
        chunks = utils.chunks(
            re_ord.get_reordered(),
667
668
669
670
671
672
673
674
675
676
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=self._batch_scheduler
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
            else None,
677
678
        )

haileyschoelkopf's avatar
haileyschoelkopf committed
679
        pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
haileyschoelkopf's avatar
haileyschoelkopf committed
680
        for chunk in chunks:
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
700
                # how this all works (illustrated on a causal decoder-only setup):
701
702
703
704
705
706
707
708
709
710
711
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
712
713
                        device=self.device,
                    )
714
715
716
717
718
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
719
                        device=self.device,
720
                    )
721
                    (inplen,) = inp.shape
722
723
724
725

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

726
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
727
                        (continuation_enc)[-self.max_length :],
728
729
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
730
                        dtype=torch.long,
731
732
                        device=self.device,
                    )
733
734
                    (contlen,) = cont.shape

735
736
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
737
738
739
740
741
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
742

haileyschoelkopf's avatar
haileyschoelkopf committed
743
744
745
746
747
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
748
749
750
751

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
752

753
754
755
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
756
757
758
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
759
760
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
761
762
763
764
765
766
767
768
769
770
771
772
773
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
774
775
776

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
777
            )  # [batch, padding_length (inp or cont), vocab]
778
779
780
781
782
783

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
784
                # take only logits in the continuation
785
                # (discard context toks if decoder-only ; discard right-padding)
786
787
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
788
                ctx_len = (
789
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
790
791
792
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
793
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
794
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
795
796
797

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
798
799
800
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
                ).unsqueeze(
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
816
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)
haileyschoelkopf's avatar
haileyschoelkopf committed
817
818
819
                pbar.update(1)

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
820

821
822
        return re_ord.get_original(res)

823
    def generate_until(self, requests):
824
825
        res = defaultdict(list)
        re_ords = {}
826
827

        def _collate(x):
828
829
830
831
832
833
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
834
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
835
            return -len(toks), x[0]
836

837
838
839
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
840
841
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
842
            # within each set of reqs for given kwargs, we reorder by token length, descending.
843
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
844

845
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
846
847
848
849
850
851
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
852
        # for each different set of kwargs, we execute all requests, by batch.
853
        for key, re_ord in re_ords.items():
854
855
            chunks = utils.chunks(
                re_ord.get_reordered(),
856
857
858
859
860
861
862
863
                n=self.batch_size
                if self.batch_size != "auto"
                else adaptive_batch_size
                if adaptive_batch_size is not None
                else 0,
                fn=self._batch_scheduler
                if self.batch_size == "auto" and not adaptive_batch_size
                else None,
864
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
865
            for chunk in chunks:
866
                contexts, all_gen_kwargs = zip(*chunk)
867
868
869
870
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
871
872
873
874
875
876
877
878
879
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
880
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
881
882
883
                            )
                else:
                    raise ValueError(
884
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
885
886
887
888
889
890
891
892
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
                # first stop sequence is used to halt generation upon encountering
893
                primary_until = [until[0]]
894

895
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
896
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
897
898
899
900
901
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
902

903
                # encode, pad, and truncate contexts for this batch
904
                context_enc, attn_masks = self.tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
905
906
907
                    contexts,
                    left_truncate_len=max_ctx_len,
                    truncation=self.truncation,
908
909
910
911
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

912
                if "max_length" not in kwargs:
Lintang Sutawika's avatar
Lintang Sutawika committed
913
                    kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
914

915
                # perform batched generation
916
917
918
919
920
921
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
                    stop=primary_until,
                    **kwargs,
                )
922

923
924
925
926
927
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
928

929
                    s = self.tok_decode(cont_toks)
930

931
932
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
933
934
935
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
936
                            s = s.split(term)[0]
937

938
                    res[key].append(s)
939

940
                    self.cache_hook.add_partial(
941
                        "generate_until", (context, gen_kwargs), s
942
943
                    )
                    pbar.update(1)
944
            # reorder this group of results back to original unsorted form
945
            res[key] = re_ord.get_original(res[key])
946

947
        pbar.close()
948

949
        return grouper.get_original(res)