metrics.py 18.5 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import os
4
import random
5
6
import re
import string
7
from collections.abc import Iterable
8
from typing import Callable, List, Optional, Sequence, TypeVar
9
10

import numpy as np
&'s avatar
& committed
11

12
from lm_eval.api.registry import register_aggregation, register_metric
13

lintangsutawika's avatar
lintangsutawika committed
14

15
16
T = TypeVar("T")

Lintang Sutawika's avatar
Lintang Sutawika committed
17
eval_logger = logging.getLogger(__name__)
18

19

20
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
21
22
23
24
25
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


26
@register_aggregation("nanmean")
Baber's avatar
Baber committed
27
def nanmean(arr: list[float]) -> float:
28
29
30
31
32
    if len(arr) == 0 or all(np.isnan(arr)):
        return np.nan
    return np.nanmean(arr)


33
@register_aggregation("mean")
Baber's avatar
Baber committed
34
def mean(arr: list[float]) -> float:
35
36
37
38
    return sum(arr) / len(arr)


@register_aggregation("median")
Baber's avatar
Baber committed
39
def median(arr: list[float]) -> float:
40
41
42
    return arr[len(arr) // 2]


43
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
44
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
45
@register_aggregation("perplexity")
Baber's avatar
Baber committed
46
def perplexity(items: list[float]) -> float:
47
48
49
50
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
Baber's avatar
Baber committed
51
def weighted_perplexity(items: list[tuple[float, float]]) -> float:
52
53
54
55
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
Baber's avatar
Baber committed
56
def bits_per_byte(items: list[tuple[float, float]]) -> float:
57
58
59
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
60
61
@register_aggregation("f1")
def f1_score(items):
62
63
    from sklearn.metrics import f1_score

haileyschoelkopf's avatar
haileyschoelkopf committed
64
65
66
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
67
    fscore = f1_score(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
68
69
70
71
72
73

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
74
75
    from sklearn.metrics import matthews_corrcoef

haileyschoelkopf's avatar
haileyschoelkopf committed
76
77
78
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
79
    return matthews_corrcoef(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
80
81


82
83
84
85
86
87
88
89
90
91
92
93
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
Baber's avatar
Baber committed
94
95
    import sacrebleu

96
97
98
99
100
101
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


102
103
104
105
106
107
108
109
110
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
Baber's avatar
Baber committed
111
112
    import sacrebleu

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
Baber's avatar
Baber committed
129
130
    import sacrebleu

131
132
133
134
135
136
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
137
138
139
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
Lintang Sutawika's avatar
Lintang Sutawika committed
140
141
    bs, num_class = np.array(predictions).shape

Lintang Sutawika's avatar
Lintang Sutawika committed
142
    gold = list(gold)
Lintang Sutawika's avatar
Lintang Sutawika committed
143
    gold_one_hot = np.eye(num_class)[gold]
Lintang Sutawika's avatar
Lintang Sutawika committed
144
145
146
147
148
149
150
151
152
153
154
155
156
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


157
158
159
160
161
162
163
164
165
166
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


167
168
169
170
171
172
173
174
175
176
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


177
178
179
180
181
182
183
184
185
186
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
### the code used in the `exact_match_hf_evaluate` function is ported from
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
    predictions,
    references,
    regexes_to_ignore=None,
    ignore_case=False,
    ignore_punctuation=False,
    ignore_numbers=False,
):
    if regexes_to_ignore is not None:
        for s in regexes_to_ignore:
            predictions = np.array([re.sub(s, "", x) for x in predictions])
            references = np.array([re.sub(s, "", x) for x in references])
    else:
        predictions = np.asarray(predictions)
        references = np.asarray(references)

    if ignore_case:
        predictions = np.char.lower(predictions)
        references = np.char.lower(references)

    if ignore_punctuation:
        repl_table = string.punctuation.maketrans("", "", string.punctuation)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    if ignore_numbers:
        repl_table = string.digits.maketrans("", "", string.digits)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    score_list = predictions == references

    return {"exact_match": np.mean(score_list)}


###
241
242


243
244
245
246
247
248
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
249
def exact_match_fn(**kwargs):
250
    return exact_match_hf_evaluate(**kwargs)
251
252


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
292

Leo Gao's avatar
Leo Gao committed
293
def pop_stddev(arr):
294
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
295
296
297
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


298
def sample_stddev(arr: Sequence[T]) -> float:
299
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
300
301
302
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
303
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
304
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
305
306


Baber Abbasi's avatar
Baber Abbasi committed
307
308
309
310
311
312
313
314
315
316
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
317
318
319
320
321
322
323
324
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
325
326
327


@register_metric(
328
    metric="f1",
329
330
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
331
    aggregation="f1",
332
)
333
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
334
    return items
335
336


337
338
339
@register_metric(
    metric="bleu",
    higher_is_better=True,
340
    output_type="generate_until",
341
342
343
344
345
346
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


347
348
349
@register_metric(
    metric="chrf",
    higher_is_better=True,
350
    output_type="generate_until",
351
352
353
354
355
356
357
358
359
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
360
    output_type="generate_until",
361
362
363
364
365
366
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
409
410
411
412
413
414
415
416
417
418

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


Baber's avatar
Baber committed
419
def weighted_mean(items: List[tuple[float, float]]) -> float:
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
459
class _bootstrap_internal:
460
461
462
463
464
465
    """
    Pool worker: `(i, xs)` → `n` bootstrap replicates
    of `f(xs)`using a RNG seeded with `i`.
    """

    def __init__(self, f: Callable[[Sequence[T]], float], n: int) -> None:
Leo Gao's avatar
Leo Gao committed
466
467
        self.f = f
        self.n = n
468

469
    def __call__(self, v: tuple[int, Sequence[T]]) -> list[float]:
Leo Gao's avatar
Leo Gao committed
470
471
472
473
474
475
476
477
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
478

479
480
481
482
483
484
485
def _bootstrap_internal_no_mp(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> list[float]:
    """
    Single-process fallback: compute `iters` bootstrap replicates
    of statistic`f(xs)`, chunked (≤ 1000 draws).
    """
Leo Gao's avatar
Leo Gao committed
486
    res = []
487
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
488
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    print(f"bootstrapping for stddev: {f.__name__}")

    # A single loop replaces the multiprocessing pool.
    for i in tqdm(range(iters // chunk_size)):
        rnd = random.Random(i)
        for _ in range(chunk_size):
            res.append(f(rnd.choices(xs, k=len(xs))))

    return res


def bootstrap_stderr(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> float:
    """
    Bootstrap estimate of the standard error of statistic `f(xs)`
    using up to `iters` resamples, chunked (≤ 1000 draws)

    Executes in parallel unless the env-var `DISABLE_MULTIPROC` is set;
    """
    if not os.getenv("DISABLE_MULTIPROC"):
        import multiprocessing as mp

        # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
        # equivalent to stderr calculated without Bessel's correction in the stddev.
        # Unfortunately, I haven't been able to figure out what the right correction is
        # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
        # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
        # Thankfully, shouldn't matter because our samples are pretty big usually anyways
        res = []
        chunk_size = min(1000, iters)
        from tqdm import tqdm

        print("bootstrapping for stddev:", f.__name__)
524
525
526
527
528
529
530
531
532
533
        with mp.Pool(mp.cpu_count()) as pool:
            for bootstrap in tqdm(
                pool.imap(
                    _bootstrap_internal(f, chunk_size),
                    [(i, xs) for i in range(iters // chunk_size)],
                ),
                total=iters // chunk_size,
            ):
                # sample w replacement
                res.extend(bootstrap)
534
535
536
    else:
        res = _bootstrap_internal_no_mp(f, xs, iters)

Leo Gao's avatar
Leo Gao committed
537
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
538
539


540
541
542
543
544
545
546
547
548
549
550
551
def stderr_for_metric(
    metric: Callable[[Sequence[T]], float], bootstrap_iters: int
) -> Optional[Callable[[Sequence[T]], float]]:
    """
    Return a function that estimates the standard error of `metric(xs)`.

    * If `bootstrap_iters > 0` and the metric is in the pre-approved
      bootstrappable list, use `bootstrap_stderr` with that many draws.
    * If the metric has a closed-form SE (e.g. `mean`, `acc_all`), use it.
    * Otherwise, return `None`.
    """

552
553
554
555
    if bootstrap_iters <= 0:
        # return no function (don't compute stderr) if bootstrap iters = 0
        return None

556
557
558
559
560
561
562
563
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
564
        nanmean,
565
566
567
568
569
570
571
572
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
573
574
575
576
577
578
579
580
581
582


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
583
584
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
585
586
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
587
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
588
589
    ) / (sum(sizes) - len(sizes))

590
    return np.sqrt(pooled_sample_var / sum(sizes))
591
592
593


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
Baber Abbasi's avatar
Baber Abbasi committed
594
595
596
    assert metrics is not None, (
        "Need to pass a list of each subtask's metric for this stderr aggregation"
    )
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
629
    if not weight_by_size:
630
631
632
633
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

Lintang Sutawika's avatar
Lintang Sutawika committed
634
    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)