Unverified Commit a8ac0446 authored by Hailey Schoelkopf's avatar Hailey Schoelkopf Committed by GitHub
Browse files

ship with exact_match function already used ; don't call evaluate.load() on import (#2045)

parent 2a6acc88
import logging
import math
import random
import re
import string
from collections.abc import Iterable
from typing import List
import evaluate as hf_evaluate
import numpy as np
import sacrebleu
import sklearn.metrics
......@@ -166,7 +167,60 @@ def acc_mutual_info_fn(items): # This is a passthrough function
return items
exact_match = hf_evaluate.load("exact_match")
### the code used in the `exact_match_hf_evaluate` function is ported from
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
predictions,
references,
regexes_to_ignore=None,
ignore_case=False,
ignore_punctuation=False,
ignore_numbers=False,
):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
predictions = np.array([re.sub(s, "", x) for x in predictions])
references = np.array([re.sub(s, "", x) for x in references])
else:
predictions = np.asarray(predictions)
references = np.asarray(references)
if ignore_case:
predictions = np.char.lower(predictions)
references = np.char.lower(references)
if ignore_punctuation:
repl_table = string.punctuation.maketrans("", "", string.punctuation)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
if ignore_numbers:
repl_table = string.digits.maketrans("", "", string.digits)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
score_list = predictions == references
return {"exact_match": np.mean(score_list)}
###
@register_metric(
......@@ -176,7 +230,7 @@ exact_match = hf_evaluate.load("exact_match")
aggregation="mean",
)
def exact_match_fn(**kwargs):
return exact_match.compute(**kwargs)
return exact_match_hf_evaluate(**kwargs)
@register_metric(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment