huggingface.py 58 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
6

7
import jinja2
8
import torch
9
import torch.nn.functional as F
10
import transformers
Jeevan's avatar
Jeevan committed
11
12
13
14
15
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
16
from accelerate.utils import get_max_memory
17
from huggingface_hub import HfApi
18
19
20
21
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
22
23
24
25
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
26
27

from lm_eval import utils
baberabb's avatar
baberabb committed
28
from lm_eval.api.instance import Instance
29
from lm_eval.api.model import TemplateLM
30
from lm_eval.api.registry import register_model
31
32
33
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
34
    configure_pad_token,
35
36
37
38
    get_dtype,
    pad_and_concat,
    stop_sequences_criteria,
)
39

40

41
eval_logger = utils.eval_logger
42

lintangsutawika's avatar
lintangsutawika committed
43

44
@register_model("hf-auto", "hf", "huggingface")
45
class HFLM(TemplateLM):
46
47
48
49
50
51
52
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

53
    AUTO_MODEL_CLASS = None
54
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
55

56
57
    def __init__(
        self,
58
        pretrained: Union[str, transformers.PreTrainedModel],
59
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
60
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
61
62
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
63
64
65
66
67
68
69
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
70
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
71
        logits_cache: bool = True,
72
73
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
74
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
75
76
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
77
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
78
        use_fast_tokenizer: Optional[bool] = True,
79
        add_bos_token: Optional[bool] = False,
80
        prefix_token_id: Optional[int] = None,
81
        # arguments used for splitting a model across GPUs naively.
82
83
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
84
85
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
86
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
87
        # PEFT, delta weights and quantization options
88
        peft: Optional[str] = None,
89
        delta: Optional[str] = None,
90
        autogptq: Optional[Union[bool, str]] = False,
91
        gptqmodel: Optional[bool] = False,
92
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
93
    ) -> None:
94
        super().__init__()
95
96
97
98
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
99
            )
100
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
101
102
103
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
104
            gpus = 0
105

106
        else:
107
108
109
110
111
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
112
113
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
114
115
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
116

117
118
119
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
120
            # using one process with no model parallelism
121
122
123
124
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
125
                    + [f"cuda:{i}" for i in range(gpus)]
126
                    + ["mps", "mps:0"]
127
                    + [f"npu:{i}" for i in range(gpus)]
128
                )
129
                if device and device in device_list:
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
146
            else:  # Parallelism managed by accelerate
147
148
149
150
151
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
152
153
154
155
156
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
157

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
158
            revision = str(revision)  # cast to string if not already one
159
160
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
161

162
            self._get_config(
163
164
165
166
167
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

168
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
169
170
171
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
172

173
174
175
176
177
178
179
180
181
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

182
183
184
185
186
187
188
189
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
190
                gpus=gpus,
191
192
193
194
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
195
                delta=delta,
196
                autogptq=autogptq,
197
                gptqmodel=gptqmodel,
198
                **kwargs,
199
200
            )

201
        # access self._model through self.model property outside this method
202
203
204
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
205

lintangsutawika's avatar
lintangsutawika committed
206
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
207
        self.logits_cache = logits_cache
208
        self.vocab_size = self.tokenizer.vocab_size
209
        # select (or create) a pad token to use
210
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
211

212
        self.add_bos_token = add_bos_token
213
        if "gemma" in getattr(self.config, "model_type", ""):
214
            self.add_bos_token = True
215
            eval_logger.info(
216
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
217
218
            )

219
        self._max_length = max_length
220
221
222
223
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
224
225
226
227
228
229
230
231
232
233
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
234

235
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
236
237
238
239
240
241
242
243
244
245
246
247
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
248
249
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
250
251
252
253
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
254
                        )
Nathan Habib's avatar
Nathan Habib committed
255
                    elif gpus > accelerator.num_processes:
256
257
258
259
260
261
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
262
263
264
265
266
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

267
                    self._device = torch.device(f"{accelerator.device}")
268
                    self.accelerator = accelerator
269

270
271
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
272
273
274
275
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
276
277
278
279
280
281
282
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
283

284
        self.custom_prefix_token_id = prefix_token_id
285
286
287
288
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
289

Nathan Habib's avatar
Nathan Habib committed
290
291
    def _get_accelerate_args(
        self,
292
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
339
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
340
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
341
                else:
Nathan Habib's avatar
Nathan Habib committed
342
343
344
345
346
347
348
349
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
350
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
351
            eval_logger.info(
352
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

378
379
380
381
382
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

383
384
385
386
387
388
389
390
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

391
392
393
394
395
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

396
397
398
399
400
401
402
403
404
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

405
406
    @property
    def max_length(self):
407
408
409
410
411
412
413
414
415
416
417
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
418

419
    @property
Ethan Smith's avatar
Ethan Smith committed
420
    def max_gen_toks(self) -> int:
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
439
440
441
442
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

443
444
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
445
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
446
        backend: Literal["default", "causal", "seq2seq"] = "default",
447
448
449
450
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
451
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
452
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
453
454
455

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
456
        """
457

458
459
460
461
462
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
463
                self.backend = backend
464
            elif backend == "seq2seq":
465
                self.backend = backend
466
            eval_logger.info(
467
                f"Overrode HF model backend type, and using type '{self.backend}'"
468
469
470
471
472
473
474
475
476
477
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
478
                self.backend = "seq2seq"
479
                eval_logger.debug(f"Using model type '{self.backend}'")
480
481
482
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
483
                self.backend = "causal"
484
                eval_logger.debug(f"Using model type '{self.backend}'")
485
486
487
488
489
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
490
                        "Setting backend to causal"
491
492
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
493
494
495
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
496
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
497
                )
498

499
500
501
502
503
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
504
505
506
507
508
509
510

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
511
        """Return the model config for HuggingFace models"""
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
528
        gpus: Optional[int] = None,
529
530
531
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
532
        # PEFT, delta weights and quantization options
533
        peft: Optional[str] = None,
534
        delta: Optional[str] = None,
535
        autogptq: Optional[Union[bool, str]] = False,
536
        gptqmodel: Optional[bool] = False,
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
553
554
555
556
557
558
559
560
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
561
            )
Nathan Habib's avatar
Nathan Habib committed
562
        )
563

564
        if not autogptq and not gptqmodel:
565
566
567
568
569
570
571
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
572
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
573
574
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
575

576
577
578
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
579
                torch_dtype=get_dtype(dtype),
580
581
582
583
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
584
585
586
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
587
588
                )

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
620

621
622
623
624
625
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

626
627
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
628
629
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
630
631
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
632
633
634
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
635
                self._model.resize_token_embeddings(len(self.tokenizer))
636
637
638
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
714
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
715
716
717
718
719
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
720
721
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
722
723
        else:
            max_length = self.max_length
724
725
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
726

Benjamin Fattori's avatar
Benjamin Fattori committed
727
728
729
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
730
            if self.backend == "seq2seq":
731
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
732
733
734
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
735
736
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
737
738
739
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
740
741
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
742
743
744
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
745
            for _ in range(5):
746
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
747

Benjamin Fattori's avatar
Benjamin Fattori committed
748
749
            return batch_size

750
751
752
753
754
755
756
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
757

758
759
760
761
762
763
764
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
765
            clear_torch_cache()
766
767
            return batch_size

768
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
769
770
        return batch_size

baberabb's avatar
baberabb committed
771
772
773
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
774
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
775
776
777
778
779
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
780
        if add_special_tokens is None:
781
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
782
783
784
785
786
787
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
788

Lintang Sutawika's avatar
Lintang Sutawika committed
789
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
790

791
792
793
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
794

795
796
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
797
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
798
799
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
800
        padding_side: str = "left",
801
802
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
803
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
804
805
806
807
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
808
        add_special_tokens = {}
809
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
810
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
811
812
813

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
814
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
815
816
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
817
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
818
819
820
821
822
823
824
825
826
827
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
828
829
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
830
831
832

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
833
        :param inps: torch.Tensor
834
835
836
837
838
839
840
841
842
843
844
845
846
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
847
848
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
849
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
850
851
852
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
853
854
855
856
857
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
858
        # temperature = 0.0 if not set
859
860
861
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
862
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
863
        do_sample = generation_kwargs.get("do_sample", None)
864
865
866
867
868

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
869
870
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
871
872
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
873
            self.tokenizer, stop, context.shape[1], context.shape[0]
874
        )
875
        return self.model.generate(
876
            input_ids=context,
877
878
            max_length=max_length,
            stopping_criteria=stopping_criteria,
879
            pad_token_id=self.tokenizer.pad_token_id,
880
881
882
            use_cache=True,
            **generation_kwargs,
        )
883

Baber Abbasi's avatar
Baber Abbasi committed
884
885
886
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
887
        if self.backend == "causal":
haileyschoelkopf's avatar
haileyschoelkopf committed
888
889
890
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
891
892
893
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
894
        elif self.backend == "seq2seq":
haileyschoelkopf's avatar
haileyschoelkopf committed
895
896
897
898
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
899
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
900
901
            logits = logits[:contlen]

902
903
        return logits

904
905
906
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
907
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
908
909
910
911
912
913
914
915
916

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

917
918
919
        for (string,) in tqdm(
            [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
        ):
920
921
922
923
924
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
925
                        prefix_token=self.prefix_token_id,
926
927
928
929
930
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
931
932

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
Baber Abbasi's avatar
Baber Abbasi committed
948
                requests=rolling_token_windows,
lintangsutawika's avatar
lintangsutawika committed
949
950
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
951
952
953
954
955
956
957
958
959
960
961
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

962
963
964
            # cache this loglikelihood_rolling request
            self.cache_hook.add_partial("loglikelihood_rolling", (string,), string_nll)

965
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
966

967
968
969
970
971
972
973
974
975
976
977
978
979
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
980
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
981
982
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
983

Ethan Smith's avatar
Ethan Smith committed
984
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
985
986
987
988
989
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
990
991
992
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
993
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
994
            """Defines the key for the sorted method"""
995
996
997
998
999
1000
1001
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1002
            toks = req[1] + req[2]
1003
1004
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1005
1006
1007
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1008
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1009
1010
1011
1012
1013
1014
1015
1016
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1017
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1018
1019
1020
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1021
1022
1023

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1024
1025
1026
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1027
1028
1029
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1030
1031
1032
1033
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1034
1035
1036
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1037
            else None
1038
1039
        )

Baber Abbasi's avatar
Baber Abbasi committed
1040
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1041
1042
1043
1044
1045
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1046
        for chunk in chunks:
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1066
                # how this all works (illustrated on a causal decoder-only setup):
1067
1068
1069
1070
1071
1072
1073
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1074
                if self.backend == "causal":
1075
1076
1077
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1078
1079
                        device=self.device,
                    )
1080
                    (inplen,) = inp.shape
1081
                elif self.backend == "seq2seq":
1082
1083
1084
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1085
                        device=self.device,
1086
                    )
1087
                    (inplen,) = inp.shape
1088
1089
1090
1091

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1092
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1093
                        (continuation_enc)[-self.max_length :],
1094
1095
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1096
                        dtype=torch.long,
1097
1098
                        device=self.device,
                    )
1099
1100
                    (contlen,) = cont.shape

1101
1102
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1103
1104
1105
1106
1107
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1108

haileyschoelkopf's avatar
haileyschoelkopf committed
1109
1110
1111
1112
1113
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1114
1115
1116
1117

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1118

1119
1120
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1121
            if self.backend == "causal":
1122
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1123
1124
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1125
            elif self.backend == "seq2seq":
1126
                # TODO: left-pad encoder inps and mask?
1127
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1128
1129
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1130
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1131
1132
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1133
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1134
1135
1136
1137
1138
1139
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1140
1141
1142

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1143
            )  # [batch, padding_length (inp or cont), vocab]
1144

Baber Abbasi's avatar
Baber Abbasi committed
1145
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1146
1147
1148
1149
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1150
                # take only logits in the continuation
1151
                # (discard context toks if decoder-only ; discard right-padding)
1152
1153
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1154
                ctx_len = (
1155
                    inplen + (logits.shape[0] - padding_len_inp)
1156
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1157
1158
                    else None
                )
1159
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1160
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1161
1162
1163
1164

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1192
1193
1194
1195
1196
1197
1198
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1199
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1200
1201

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1202

1203
1204
        return re_ord.get_original(res)

1205
1206
1207
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1208
        res = []
1209

Baber Abbasi's avatar
Baber Abbasi committed
1210
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1211
            """Defines the key for the sorted method"""
1212
1213
1214
1215
1216
1217
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1218
1219
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1220

1221
1222
        pbar = tqdm(
            total=len(requests),
1223
            disable=(disable_tqdm or (self.rank != 0)),
1224
1225
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1226
        adaptive_batch_size = None
1227
1228
1229
1230
1231
1232
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1233
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1246

Baber Abbasi's avatar
Baber Abbasi committed
1247
1248
1249
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1250
1251
1252
1253
1254
1255
1256
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
achervyakov's avatar
achervyakov committed
1270
                        until = [until]
Baber Abbasi's avatar
Baber Abbasi committed
1271
1272
1273
1274
1275
1276
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1277
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1278
                )
1279
            # add EOS token to stop sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
1280
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1281
            if not until:
1282
1283
1284
                until = [eos]
            else:
                until.append(eos)
Baber Abbasi's avatar
Baber Abbasi committed
1285
1286
1287
1288
1289
1290
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1291
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1292
1293
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
1294
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1306

Baber Abbasi's avatar
Baber Abbasi committed
1307
1308
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1309

Baber Abbasi's avatar
Baber Abbasi committed
1310
1311
1312
1313
1314
1315
1316
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1317

Baber Abbasi's avatar
Baber Abbasi committed
1318
1319
1320
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1321
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1322
                    cont_toks = cont_toks[context_enc.shape[1] :]
1323

Baber Abbasi's avatar
Baber Abbasi committed
1324
                s = self.tok_decode(cont_toks)
1325

Baber Abbasi's avatar
Baber Abbasi committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1339

1340
        pbar.close()
1341

Baber Abbasi's avatar
Baber Abbasi committed
1342
        return res
1343

KonradSzafer's avatar
KonradSzafer committed
1344
1345
1346
1347
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1362

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1387
                eval_logger.debug(
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info