race.py 5.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
"""
RACE: Large-scale ReAding Comprehension Dataset From Examinations
https://arxiv.org/pdf/1704.04683.pdf

RACE is a large-scale reading comprehension dataset with more than 28,000 passages
and nearly 100,000 questions. The dataset is collected from English examinations
in China, which are designed for middle school and high school students. The dataset
can be served as the training and test sets for machine comprehension.

Homepage: https://www.cs.cmu.edu/~glai1/data/race/
11
12
13
14
"""
import collections
import datasets
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
15
16
from lm_eval.base import rf, Task
from lm_eval.metrics import mean
17

18
19

_CITATION = """
20
21
22
@article{lai2017large,
    title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
    author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
bzantium's avatar
bzantium committed
23
    journal={arXiv preprint arXiv:1704.04683},
24
25
26
    year={2017}
}
"""
Leo Gao's avatar
Leo Gao committed
27
28
29
30
31
32
33
34


class each:
    def __init__(self, f):
        self.f = f

    def __rrshift__(self, other):
        return list(map(self.f, other))
Leo Gao's avatar
Leo Gao committed
35
36


Jonathan Tow's avatar
Jonathan Tow committed
37
38
class RACE(Task):
    VERSION = 1
Leo Gao's avatar
Leo Gao committed
39
40
    DATASET_PATH = "race"
    DATASET_NAME = "high"
Leo Gao's avatar
Leo Gao committed
41
42

    cache = {}
bzantium's avatar
bzantium committed
43
    letter_to_num = {"A": 0, "B": 1, "C": 2, "D": 3}
Leo Gao's avatar
Leo Gao committed
44
45
46
47
48
49
50
51
52
53
54

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def _collate_data(self, set):
Leo Gao's avatar
Leo Gao committed
55
56
        if set in self.cache:
            return self.cache[set]
Leo Gao's avatar
Leo Gao committed
57
58
59
60
61
        # One big issue with HF's implementation of this dataset: it makes a
        # separate document for each question; meanwhile, in the GPT3 paper it
        # is shown that one document is made per passage.

        r = collections.defaultdict(list)
bzantium's avatar
bzantium committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        for item in datasets.load_dataset(
            path=self.DATASET_PATH, name=self.DATASET_NAME
        )[set]:
            r[item["article"]].append(item)

        res = list(
            r.values()
            >> each(
                lambda x: {
                    "article": x[0]["article"],
                    "problems": x
                    >> each(
                        lambda y: {
                            "question": y["question"],
                            "answer": y["answer"],
                            "options": y["options"],
                        }
                    ),
                }
            )
        )
Leo Gao's avatar
Leo Gao committed
83
84
85
86
87
88
89
90
91
92
93
94
95

        self.cache[set] = res
        return res

    def training_docs(self):
        return self._collate_data("train")

    def validation_docs(self):
        return self._collate_data("validation")

    def test_docs(self):
        return self._collate_data("test")

Jon Tow's avatar
Jon Tow committed
96
97
    @classmethod
    def get_answer_option(cls, problem):
bzantium's avatar
bzantium committed
98
99
        answer = cls.letter_to_num[problem["answer"]]
        return problem["options"][answer]
Jon Tow's avatar
Jon Tow committed
100
101
102

    @classmethod
    def last_problem(cls, doc):
bzantium's avatar
bzantium committed
103
        return doc["problems"][-1]
Jon Tow's avatar
Jon Tow committed
104

105
    def doc_to_text(self, doc):
bzantium's avatar
bzantium committed
106
107
108
109
110
111
        text = "Article: " + doc["article"] + "\n\n"
        for problem in doc["problems"][:-1]:
            if problem["question"][-6:] == "  _  .":
                text += (
                    problem["question"][-5:] + self.get_answer_option(problem) + "\n"
                )
Leo Gao's avatar
Leo Gao committed
112
            else:
bzantium's avatar
bzantium committed
113
114
                question = "Question: " + problem["question"] + "\n"
                answer = "Answer: " + self.get_answer_option(problem) + "\n"
Leo Gao's avatar
Leo Gao committed
115
                text += question + answer
bzantium's avatar
bzantium committed
116
        text += self.last_problem(doc)["question"]
Jon Tow's avatar
Jon Tow committed
117
        return text
Leo Gao's avatar
Leo Gao committed
118

bzantium's avatar
bzantium committed
119
120
121
122
123
124
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
        return doc["article"]

125
    def doc_to_target(self, doc):
Jon Tow's avatar
Jon Tow committed
126
        return " " + self.get_answer_option(self.last_problem(doc))
Leo Gao's avatar
Leo Gao committed
127

Leo Gao's avatar
Leo Gao committed
128
    def construct_requests(self, doc, ctx):
bzantium's avatar
bzantium committed
129
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
130
131
132
133
134
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
bzantium's avatar
bzantium committed
135
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
136
            language description, as well as the few shot examples, and the question
bzantium's avatar
bzantium committed
137
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
138
        """
Jon Tow's avatar
Jon Tow committed
139
140
        problem = self.last_problem(doc)
        ll_choices = [
bzantium's avatar
bzantium committed
141
            rf.loglikelihood(ctx, " " + problem["options"][i])[0] for i in range(4)
Jon Tow's avatar
Jon Tow committed
142
143
144
        ]
        return ll_choices

Leo Gao's avatar
Leo Gao committed
145
    def process_results(self, doc, results):
bzantium's avatar
bzantium committed
146
147
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
148
149
150
151
152
153
154
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
bzantium's avatar
bzantium committed
155
        gold = self.letter_to_num[self.last_problem(doc)["answer"]]
Jon Tow's avatar
Jon Tow committed
156
        pred = np.argmax(results)
bzantium's avatar
bzantium committed
157
        return {"acc": int(pred == gold)}
Leo Gao's avatar
Leo Gao committed
158
159
160
161

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
bzantium's avatar
bzantium committed
162
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
163
164
            functions that aggregate a list of metrics
        """
bzantium's avatar
bzantium committed
165
        return {"acc": mean}
Leo Gao's avatar
Leo Gao committed
166
167
168
169

    def higher_is_better(self):
        """
        :returns: {str: bool}
bzantium's avatar
bzantium committed
170
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
171
172
            whether a higher value of the submetric is better
        """
bzantium's avatar
bzantium committed
173
        return {"acc": True}