race.py 3.74 KB
Newer Older
1
from . common import HFTask
Leo Gao's avatar
Leo Gao committed
2
3
from ..utils_stream import X, each, apply, join, filt, one
import collections
4
import datasets
Leo Gao's avatar
Leo Gao committed
5
6


7
class RACE(HFTask):
Leo Gao's avatar
Leo Gao committed
8
9
    DATASET_PATH = "race"
    DATASET_NAME = "high"
Leo Gao's avatar
Leo Gao committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

    cache = {}

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def _collate_data(self, set):
        if set in self.cache: return self.cache[set]
        # One big issue with HF's implementation of this dataset: it makes a
        # separate document for each question; meanwhile, in the GPT3 paper it
        # is shown that one document is made per passage.

        r = collections.defaultdict(list)
29
        for item in datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME)[set]:
Leo Gao's avatar
Leo Gao committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
            r[item['article']].append(item)
        
        res = list(r.values() >> each(lambda x: {
            'article': x[0]['article'],
            'problems': x >> each(lambda y: {
                'question': y['question'],
                'answer': y['answer'],
                'options': y['options'],
            })
        }))

        self.cache[set] = res
        return res

    def training_docs(self):
        return self._collate_data("train")

    def validation_docs(self):
        return self._collate_data("validation")

    def test_docs(self):
        return self._collate_data("test")

    def fewshot_description(self):
        # TODO: figure out description
        return ""

    def doc_to_text(self, doc, include_target=True):
        r = "Article:\n" + doc['article'] + '\n\n'

Leo Gao's avatar
Leo Gao committed
60
61
62
63
64
        r += doc['problems'] >> apply(enumerate) >> each(
            lambda x: 'Q: ' + x[1]['question'] + '\n\nA:' 
            + ((' ' + x[1]['options'][['A', 'B', 'C', 'D'].index(x[1]['answer'])]) \
                if x[0] != len(doc['problems']) - 1 or include_target else '')) \
            >> join('\n\n')
Leo Gao's avatar
Leo Gao committed
65
66
67

        return r

Leo Gao's avatar
Leo Gao committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')