openai_completions.py 16.6 KB
Newer Older
1
import copy
Jason Phang's avatar
gpt3  
Jason Phang committed
2
import os
lintangsutawika's avatar
update  
lintangsutawika committed
3
from collections import defaultdict
4
from importlib.util import find_spec
5
from typing import List, Literal, Optional, Tuple
6

Leo Gao's avatar
Leo Gao committed
7
from tqdm import tqdm
lintangsutawika's avatar
update  
lintangsutawika committed
8

9
import lm_eval.models.utils
lintangsutawika's avatar
lintangsutawika committed
10
from lm_eval import utils
11
from lm_eval.api.model import LM, TemplateLM
12
from lm_eval.api.registry import register_model
13
14
from lm_eval.models.utils import retry_on_specific_exceptions
from lm_eval.utils import eval_logger
Leo Gao's avatar
Leo Gao committed
15

lintangsutawika's avatar
update  
lintangsutawika committed
16

Baber Abbasi's avatar
Baber Abbasi committed
17
def get_result(response, ctxlen: int) -> Tuple[float, bool]:
lintangsutawika's avatar
lintangsutawika committed
18
19
20
21
22
23
24
25
26
27
28
29
30
    """Process results from OpenAI API response.

    :param response: dict
        OpenAI API Response
    :param ctxlen: int
        Length of context (so we can slice them away and only keep the predictions)
    :return:
        continuation_logprobs: np.array
            Log probabilities of continuation tokens
        is_greedy: bool
            whether argmax matches given continuation exactly
    """
    is_greedy = True
Baber Abbasi's avatar
Baber Abbasi committed
31
    logprobs = response.logprobs.token_logprobs
lintangsutawika's avatar
lintangsutawika committed
32
33
    continuation_logprobs = sum(logprobs[ctxlen:])

Baber Abbasi's avatar
Baber Abbasi committed
34
35
36
    for i in range(ctxlen, len(response.logprobs.token_logprobs)):
        token = response.logprobs.token_logprobs[i]
        top_tokens = response.logprobs.top_logprobs[i]
lintangsutawika's avatar
lintangsutawika committed
37
38
39
40
41
42
43
44
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break

    return continuation_logprobs, is_greedy


45
def oa_completion(client, chat: bool = False, **kwargs):
lintangsutawika's avatar
lintangsutawika committed
46
47
48
49
    """Query OpenAI API for completion.

    Retry with back-off until they respond
    """
50
    if not find_spec("openai") or not find_spec("tiktoken"):
lintangsutawika's avatar
lintangsutawika committed
51
        raise Exception(
52
53
            "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. "
            "Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`"
lintangsutawika's avatar
lintangsutawika committed
54
        )
55
56
    else:
        import openai
lintangsutawika's avatar
lintangsutawika committed
57

58
59
60
61
62
63
64
65
66
67
68
    def _exception_callback(e: Exception, sleep_time: float) -> None:
        import traceback

        traceback.print_exc()

    @retry_on_specific_exceptions(
        on_exceptions=[openai.OpenAIError],
        max_retries=None,  # retry forever, consider changing
        on_exception_callback=_exception_callback,
    )
    def completion():
69
70
71
72
        if chat:
            return client.chat.completions.create(**kwargs)
        else:
            return client.completions.create(**kwargs)
lintangsutawika's avatar
lintangsutawika committed
73

74
    return completion()
lintangsutawika's avatar
lintangsutawika committed
75
76


77
@register_model("openai-completions", "local-completions")
78
class OpenaiCompletionsLM(TemplateLM):
Baber Abbasi's avatar
Baber Abbasi committed
79
    _DEFAULT_MAX_LENGTH = 2048
lintangsutawika's avatar
lintangsutawika committed
80
81
82

    def __init__(
        self,
83
        model: str,
84
85
86
        base_url: str = None,
        tokenizer: Optional[str] = None,
        tokenizer_backend: Literal["tiktoken", "huggingface"] = "tiktoken",
lintangsutawika's avatar
lintangsutawika committed
87
        truncate: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
88
        max_gen_toks: int = 256,
lintangsutawika's avatar
lintangsutawika committed
89
        batch_size: int = 1,
Baber Abbasi's avatar
Baber Abbasi committed
90
91
        seed: int = 1234,
        max_length: Optional[int] = None,
lintangsutawika's avatar
lintangsutawika committed
92
93
94
95
    ) -> None:
        """

        :param engine: str
96
            OpenAI API engine (e.g. gpt-3.5-turbo-instruct)
lintangsutawika's avatar
lintangsutawika committed
97
98
99
100
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
        super().__init__()
Baber Abbasi's avatar
Baber Abbasi committed
101
        self.seed = seed
lintangsutawika's avatar
lintangsutawika committed
102
        try:
103
104
            import openai  # noqa: E401
            import tiktoken
lintangsutawika's avatar
lintangsutawika committed
105
106
107
108
109
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
    please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
            )
Baber Abbasi's avatar
Baber Abbasi committed
110
        self.model = model
111
112
        self.base_url = base_url
        self.tokenizer_backend = tokenizer_backend
lintangsutawika's avatar
lintangsutawika committed
113
        self.truncate = truncate
114
        self._batch_size = batch_size
Baber Abbasi's avatar
Baber Abbasi committed
115
116
        self._max_gen_toks = max_gen_toks
        self._max_length = max_length
lintangsutawika's avatar
lintangsutawika committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        # if we have a local model, use HF tokenizer over tiktoken
        if self.tokenizer_backend == "huggingface":
            import transformers  # noqa: E401

            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                tokenizer if tokenizer else self.model
            )
            self.vocab_size = self.tokenizer.vocab
            self.end_of_text_token_id = self.tokenizer.eos_token
        elif self.tokenizer_backend == "tiktoken":
            if self.base_url:
                eval_logger.warning(
                    f"Passed `base_url={self.base_url}` but using Tiktoken tokenizer backend. "
                    "Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
                )

            self.tokenizer = tiktoken.encoding_for_model(self.model)
            self.vocab_size = self.tokenizer.n_vocab
            self.end_of_text_token_id = self.tokenizer.eot_token
        else:
            raise ValueError(
                f"Expected tokenizer_backend to be one of ['tiktoken', 'huggingface'] but got {self.tokenizer_backend}"
            )

142
        # Read from environment variable OPENAI_API_KEY
143
        # Set to EMPTY for local
Baber Abbasi's avatar
Baber Abbasi committed
144
        openai.api_key = os.environ["OPENAI_API_KEY"]
145
146
147
148
        if self.base_url:
            self.client = openai.OpenAI(base_url=self.base_url)
        else:
            self.client = openai.OpenAI()
lintangsutawika's avatar
lintangsutawika committed
149
150
151
152
153
154
155

    @property
    def eot_token_id(self):
        return self.end_of_text_token_id

    @property
    def max_length(self) -> int:
Baber Abbasi's avatar
Baber Abbasi committed
156
157
158
159
        if self._max_length:
            return self._max_length
        else:
            return self._DEFAULT_MAX_LENGTH
lintangsutawika's avatar
lintangsutawika committed
160
161
162

    @property
    def max_gen_toks(self) -> int:
Baber Abbasi's avatar
Baber Abbasi committed
163
        return self._max_gen_toks
lintangsutawika's avatar
lintangsutawika committed
164
165

    @property
166
167
    def batch_size(self) -> int:
        return self._batch_size
lintangsutawika's avatar
lintangsutawika committed
168
169
170
171
172
173

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

174
    def tok_encode(self, string: str, **kwargs) -> List[int]:
lintangsutawika's avatar
lintangsutawika committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        return self.tokenizer.encode(string)

    def tok_decode(self, tokens: List[int]) -> str:
        return self.tokenizer.decode(tokens)

    def _loglikelihood_tokens(
        self, requests, disable_tqdm: bool = False
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            # this doesn't efficiently handle last-token differences yet, but those are kinda annoying because
            # it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations
            # we care about, and so we need some kind of backup for when it isn't
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)

        for chunk in tqdm(
195
            list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)),
lintangsutawika's avatar
lintangsutawika committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            disable=disable_tqdm,
        ):
            inps = []
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                # max_length+1 because the API takes up to 2049 tokens, including the first context token
                inp = (context_enc + continuation_enc)[-(self.max_length + 1) :]
                # TODO: the logic is much simpler if we just look at the length of continuation tokens
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length + 1)
                )

                inps.append(inp)
                ctxlens.append(ctxlen)

            response = oa_completion(
212
                client=self.client,
Baber Abbasi's avatar
Baber Abbasi committed
213
                model=self.model,
lintangsutawika's avatar
lintangsutawika committed
214
215
216
217
218
                prompt=inps,
                echo=True,
                max_tokens=0,
                temperature=0.0,
                logprobs=10,
Baber Abbasi's avatar
Baber Abbasi committed
219
                seed=self.seed,
lintangsutawika's avatar
lintangsutawika committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
            )

            for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
                response.choices, ctxlens, chunk
            ):
                answer = get_result(resp, ctxlen)

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
        return re_ord.get_original(res)

    def generate_until(self, requests) -> List[str]:
        if not requests:
            return []
        res = []
        requests = [req.args for req in requests]

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer(requests, _collate)

        def sameuntil_chunks(xs, size):
            ret = []
            lastuntil = xs[0][1]
            for x in xs:
                if len(ret) >= size or x[1] != lastuntil:
                    yield ret, lastuntil
                    ret = []
                    lastuntil = x[1]
                ret.append(x)

            if ret:
                yield ret, lastuntil

        # todo: more intelligent batching for heterogeneous `until`
        for chunk, request_args in tqdm(
261
            list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size))
lintangsutawika's avatar
lintangsutawika committed
262
263
        ):
            inps = []
Baber Abbasi's avatar
Baber Abbasi committed
264
            self._max_gen_toks = request_args.pop("max_gen_toks", self.max_gen_toks)
lintangsutawika's avatar
lintangsutawika committed
265
266
267
268
269
            for context, _ in chunk:
                context_enc = self.tok_encode(context)
                inp = context_enc[-(self.max_length - self.max_gen_toks) :]
                inps.append(inp)

Baber Abbasi's avatar
Baber Abbasi committed
270
271
272
            until = request_args.pop("until", ["<|endoftext|>"])
            request_args.pop("do_sample", None)
            request_args["temperature"] = request_args.get("temperature", 0)
lintangsutawika's avatar
lintangsutawika committed
273
274

            response = oa_completion(
275
                client=self.client,
276
                model=self.model,
lintangsutawika's avatar
lintangsutawika committed
277
278
279
                prompt=inps,
                max_tokens=self.max_gen_toks,
                stop=until,
Baber Abbasi's avatar
Baber Abbasi committed
280
281
                seed=self.seed,
                **request_args,
lintangsutawika's avatar
lintangsutawika committed
282
283
            )
            for resp, (context, args_) in zip(response.choices, chunk):
Baber Abbasi's avatar
Baber Abbasi committed
284
                s = getattr(resp, "text")
lintangsutawika's avatar
lintangsutawika committed
285

Baber Abbasi's avatar
Baber Abbasi committed
286
                until_ = until
lintangsutawika's avatar
lintangsutawika committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

                for term in until_:
                    if len(term) > 0:
                        s = s.split(term)[0]

                # partial caching
                self.cache_hook.add_partial(
                    "generate_until", (context, {"until": until_}), s
                )

                res.append(s)
        return re_ord.get_original(res)

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
        # Isn't used because we override generate_until
        raise NotImplementedError()

    def loglikelihood_rolling(self, requests) -> List[float]:
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
                disable_tqdm=True,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods


340
@register_model("openai-chat-completions", "local-chat-completions")
341
class OpenaiChatCompletionsLM(LM):
342
    def __init__(
343
344
345
346
347
        self,
        model: str = "gpt-3.5-turbo",  # GPT model or Local model using HuggingFace model paths
        base_url: str = None,
        truncate: bool = False,
        **kwargs,
348
    ) -> None:
349
350
        """

lintangsutawika's avatar
lintangsutawika committed
351
        :param model: str
352
353
354
            Implements an OpenAI-style chat completion API for
            accessing both OpenAI OR locally-hosted models using
            HuggingFace Tokenizer
lintangsutawika's avatar
lintangsutawika committed
355
            OpenAI API model (e.g. gpt-3.5-turbo)
356
            using the **gen_kwargs passed on init
357
358
359
360
361
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
        super().__init__()
        try:
362
            import openai  # noqa: E401
363
364
365
366
367
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
    please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
            )
lintangsutawika's avatar
lintangsutawika committed
368
        self.model = model
369
        self.base_url = base_url
370
        self.truncate = truncate
371

372
        # Read from environment variable OPENAI_API_KEY
373
374
375
376
377
        # Set to EMPTY for local
        if self.base_url:
            self.client = openai.OpenAI(base_url=self.base_url)
        else:
            self.client = openai.OpenAI()  # openai.AsyncOpenAI()
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

    @property
    def max_length(self) -> int:
        # Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
        return 2048

    @property
    def max_gen_toks(self) -> int:
        return 256

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

398
    def generate_until(self, requests) -> List[str]:
lintangsutawika's avatar
update  
lintangsutawika committed
399
400
        res = defaultdict(list)
        re_ords = {}
401

lintangsutawika's avatar
update  
lintangsutawika committed
402
403
404
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
405
        grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
lintangsutawika's avatar
update  
lintangsutawika committed
406
407
        for key, reqs in grouper.get_grouped().items():
            # within each set of reqs for given kwargs, we reorder by token length, descending.
408
409
410
            re_ords[key] = utils.Reorderer(
                [req.args for req in reqs], lambda x: (-len(x[0]), x[0])
            )
411

lintangsutawika's avatar
update  
lintangsutawika committed
412
413
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
        for key, re_ord in re_ords.items():
414
415
            # n needs to be 1 because messages in
            # chat completion are not batch but
416
            # is regarded as a single conversation.
417
            chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1)
lintangsutawika's avatar
update  
lintangsutawika committed
418
419
420
421
            for chunk in chunks:
                contexts, all_gen_kwargs = zip(*chunk)
                inps = [{"role": "user", "content": context} for context in contexts]

422
423
                gen_kwargs = all_gen_kwargs[0]
                until = None
Baber Abbasi's avatar
Baber Abbasi committed
424
                if isinstance(kwargs := copy.deepcopy(gen_kwargs), dict):
425
426
                    if "do_sample" in kwargs.keys():
                        kwargs.pop("do_sample")
427
428
429
430
431
432
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
433
                                f"Expected repr(kwargs['until']) to be of type Union[str, list] but got {until}"
434
                            )
Baber Abbasi's avatar
Baber Abbasi committed
435
436
                        kwargs["stop"] = until
                    kwargs["max_tokens"] = kwargs.pop("max_gen_toks", self.max_gen_toks)
437
438
                else:
                    raise ValueError(
439
                        f"Expected repr(kwargs) to be of type repr(dict) but got {kwargs}"
440
441
                    )

442
443
444
445
446
447
                response = oa_completion(
                    client=self.client,
                    chat=True,
                    messages=inps,
                    model=self.model,
                    **kwargs,
lintangsutawika's avatar
update  
lintangsutawika committed
448
                )
449

450
451
                for resp, (context, args_) in zip(response.choices, chunk):
                    s = resp.message.content
452

453
454
455
456
                    if until is not None:
                        for term in until:
                            if len(term) > 0:
                                s = s.split(term)[0]
lintangsutawika's avatar
update  
lintangsutawika committed
457

458
                    res[key].append(s)
lintangsutawika's avatar
update  
lintangsutawika committed
459

460
461
462
463
464
                    self.cache_hook.add_partial(
                        "generate_until", (context, {"until": until}), s
                    )
                    pbar.update(1)
            # reorder this group of results back to original unsorted form
lintangsutawika's avatar
update  
lintangsutawika committed
465
466
467
            res[key] = re_ord.get_original(res[key])

        pbar.close()
468

lintangsutawika's avatar
update  
lintangsutawika committed
469
        return grouper.get_original(res)
470
471
472
473
474
475

    def loglikelihood(self, requests):
        raise NotImplementedError("No support for logits.")

    def loglikelihood_rolling(self, requests):
        raise NotImplementedError("No support for logits.")