task.py 34.3 KB
Newer Older
1
2
3
4
import abc
from dataclasses import dataclass

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
from lm_eval.metrics import (
lintangsutawika's avatar
lintangsutawika committed
27
    METRIC_REGISTRY,
28
29
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
30
31
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
32
33
34
    DEFAULT_AGGREGATION_REGISTRY,
    # get_metric,
    # get_aggregation,
lintangsutawika's avatar
lintangsutawika committed
35
36
37
38
    mean,
    weighted_perplexity,
    bits_per_byte,
)
39

40
41
42
43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

47
48
49
50

@dataclass
class TaskConfig(dict):

51
52
    task: str = None
    group: str = None
53
    names: str = None
lintangsutawika's avatar
lintangsutawika committed
54
    reference: str = None
lintangsutawika's avatar
lintangsutawika committed
55
56
57
    task_name: str = (
        None  # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
    )
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65

66
    template_aliases: str = None
67
    aliases: Union[str, list] = None
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
70

71
72
    num_fewshot: int = 0
    batch_size: int = 1
73
74
    repeats: int = 1

75
76
77
78
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
    delimiter: str = "\n\n"
lintangsutawika's avatar
lintangsutawika committed
79
    filter_list: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
80
81
82
    normalization: str = (
        None  # TODO: add length-normalization of various types, mutual info
    )
83
84
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
85
    use_prompt: str = None
86

lintangsutawika's avatar
lintangsutawika committed
87
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
88

89
90
91
92
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
93
94
95
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
96

97
98
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
99

100
101
102
        # set "task_name" metadata field based on the "primary" name set
        if self.names:
            self.task_name = self.names[0]
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
119

120
121
122
123
124
125
126
127
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
163
        self._config = TaskConfig(**config) if config else TaskConfig()
164
165
166

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
167
            for name, components in self._config.get(
168
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
169
            ):
170
171
172
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
173
174
175
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
202
203
204
205
206
207
208
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

246
247
248
249
250
251
252
253
254
255
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
256
            eval_logger.warning(
257
                "has_training_docs and has_validation_docs are False"
lintangsutawika's avatar
lintangsutawika committed
258
                "using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
259
            )
260
261
            return self.test_docs()

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

300
    def build_all_requests(self, limit=None, rank=None, world_size=None):
301
302
303
304
305
306
307
308
309
310
311
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
312
313
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
314
        ):
315
            # sample fewshot context #TODO: need to offset doc_id by rank now!
316
317
318
319
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
320
321
322
323
324
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
                metadata=(self._config["task_name"], doc_id, self._config.repeats),
            )
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
350
            The number of times each instance in a dataset is inferred on. Defaults to 1,
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
386
387
388
389
390
391
392
393
394
395
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:
418
            labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)
419
420

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            # if self.has_training_docs():
            #     fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            # else:
            #     if self._fewshot_docs is None:
            #         self._fewshot_docs = list(
            #             self.validation_docs()
            #             if self.has_validation_docs()
            #             else self.test_docs()
            #         )

            #     fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

            #     # get rid of the doc that's the one we're evaluating, if it's in the fewshot
            #     fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            # labeled_examples = (
            #     "\n\n".join(
            #         [
            #             self.doc_to_text(doc) + self.doc_to_target(doc)
            #             for doc in fewshotex
            #         ]
            #     )
            #     + "\n\n"
            # )
445
446
447
448
449
450

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
451
452
453
454
455
456
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
457
458
459
460
461


class ConfigurableTask(Task):

    VERSION = "2.0"
462
    OUTPUT_TYPE = None
463
    CONFIG = None
464
465
466
467

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
468
        # Get pre-configured attributes
469
        self._config = self.CONFIG
470

471
472
        # Use new configurations if there was no preconfiguration
        if self._config is None:
473
            self._config = TaskConfig(**config)
474
475
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
476
            if config is not None:
477
                self._config.__dict__.update(config)
478

479
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
480
481
482
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
483
484

        if self._config.output_type is not None:
485
            assert self._config.output_type in ALL_OUTPUT_TYPES
486
487
            self.OUTPUT_TYPE = self._config.output_type

488
489
490
491
492
493
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

494
495
496
497
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
498

499
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
500
501
502
503
504
        if self._config.metric_list is None:
            eval_logger.warning(
                f"Output Type set as {self._config.output_type} and metric_list is not set"
                "Will default to exact_match"
            )
505
506
507
508
509
510
511
            for metric_name in _metric_list:
                self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
                aggregation = DEFAULT_AGGREGATION_REGISTRY[metric_name]
                self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
                self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                    metric_name
                ]
512
513
514
515
516
517
518
519
520
521
522
        else:
            for metric_config in self._config.metric_list:

                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
                if metric_name in _metric_list:
523
                    self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
                else:
                    eval_logger.warning(
                        f"Metric {metric_name} not found, "
                        "Searching from https://huggingface.co/evaluate-metric"
                    )
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_fn_list[metric_name] = metric_object
                        self._metric_fn_kwargs[metric_name] = kwargs

                    except Exception:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
lintangsutawika's avatar
lintangsutawika committed
539

540
541
542
543
544
545
546
                if "aggregation" in metric_config:
                    self._aggregation_list[metric_name] = metric_config["aggregation"]
                else:
                    eval_logger.warning(
                        f"metric {metric_name} is defined, but aggregation is not"
                        f"using default aggregation for {metric_name}"
                    )
547
548
549
                    aggregation = DEFAULT_AGGREGATION_REGISTRY[metric_name]
                    self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[
                        aggregation
lintangsutawika's avatar
lintangsutawika committed
550
551
                    ]

552
553
554
555
556
557
558
559
560
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
                        f"metric {metric_name} is defined, but higher_is_better is not"
                        f"using default higher_is_better for {metric_name}"
                    )
561
562
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
lintangsutawika's avatar
lintangsutawika committed
563
                    ]
564

565
        self.download(self._config.dataset_kwargs)
566
567
568
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
569
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
570
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
571
572
573
574
575
576
577
578
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
579
580
581
582
                        }
                        components.append([function["function"], kwargs])

                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
583
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
584
        else:
lintangsutawika's avatar
lintangsutawika committed
585
586
587
            self._filters = [
                build_filter_ensemble("take_first", [["take_first", None]])
            ]
588
589

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
590
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
591
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
592
593
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
594
595
596
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
597
598
599
600
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
            )  # TODO: pass the correct docs in here
601

602
603
604
605
606
607
608
609
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

640
    def fewshot_docs(self):
lintangsutawika's avatar
lintangsutawika committed
641
        if (self._config.num_fewshot > 0) and (self._config.fewshot_split is None):
lintangsutawika's avatar
lintangsutawika committed
642
            eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
643
                "num_fewshot > 0 but fewshot_split is None. "
lintangsutawika's avatar
lintangsutawika committed
644
                "using preconfigured rule."
lintangsutawika's avatar
lintangsutawika committed
645
            )
646
647
            return super().fewshot_docs()

lintangsutawika's avatar
lintangsutawika committed
648
        elif self._config.fewshot_split is not None:
649
650
            return self.dataset[self._config.fewshot_split]

651
652
653
654
655
656
657
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

658
659
660
661
662
663
664
665
666
667
668
669
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
670
671
672

        if self.prompt is not None:
            doc_to_text = self.prompt
673
674
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
675

676
677
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
678
        elif callable(doc_to_text):
679
680
681
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
682
        else:
683
            print(type(doc_to_text))
684
            raise TypeError
685
686

    def doc_to_target(self, doc):
687
688
689

        if self.prompt is not None:
            doc_to_target = self.prompt
690
691
692
        else:
            doc_to_target = self._config.doc_to_target

693
694
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
695
        elif callable(doc_to_target):
696
697
698
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
699
700
        else:
            raise TypeError
701
702
703

    def construct_requests(self, doc, ctx, **kwargs):

704
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
705
            arguments = (ctx, self.doc_to_target(doc))
706
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
707
            arguments = (self.doc_to_target(doc),)
708
        elif self.OUTPUT_TYPE == "multiple_choice":
709
710
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
711
712
713
714
715
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
716
            request_list = [
717
718
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
719
                    doc=doc,
720
                    arguments=(ctx, " {}".format(choice)),
721
                    idx=i,
722
723
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
724
                for i, choice in enumerate(choices)
725
            ]
726
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
727
            if "acc_mutual_info" in self._metric_fn_list.keys():
728
729
730
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
731
                # here mutual info refers to calculating
732
733
734
735
736
737
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
738
                            doc=doc,
739
740
741
742
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
743
                        for i, choice in enumerate(choices)
744
745
746
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
747

748
        elif self.OUTPUT_TYPE == "greedy_until":
lintangsutawika's avatar
lintangsutawika committed
749
            arguments = (ctx, self._config.delimiter)
lintangsutawika's avatar
lintangsutawika committed
750
751

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
752
753
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
754
755
756
757

    def process_results(self, doc, results):

        result_dict = {}
758
        use_metric = list(self._metric_fn_list.keys())
759
760
761
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
762
763
764
765
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
766
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
767
            (loglikelihood,) = results
768
769
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
770
            return {
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
786
            }
787
        elif self.OUTPUT_TYPE == "multiple_choice":
788
789

            lls, is_greedy = zip(*results)
haileyschoelkopf's avatar
haileyschoelkopf committed
790
            gold = int(self.doc_to_target(doc))
791
            pred = np.argmax(lls)
792
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
793
794
795
796
797
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
798
799

            acc = 1.0 if np.argmax(lls) == gold else 0.0
800
801
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
802
803

            result_dict = {
804
805
806
                **({"acc": acc} if "acc" in use_metric else {}),
                **({"f1": (pred, gold)} if "f1" in use_metric else {}),
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
807
808
809
            }

            # TODO: set which normalization metrics should be reported, and calculate them
810
            if "exact_match" in self._metric_fn_list.keys():
811
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
812
                is_greedy = is_greedy[gold]  # take value for the gold answer
813
814
                result_dict["exact_match"] = int(is_greedy)

815
816
817
818
819
820
821
822
823
            if "acc_mutual_info" in use_metric:
                if 2 * len(choices) == len(lls):
                    # then we are doing mutual info.
                    # this stores the "dryrun" / unconditional answer loglikelihoods
                    lls_unconditional = lls[1::2]
                    assert len(lls_unconditional) == len(choices)
                    # and this stores our "regular" conditional loglikelihoods
                    lls = lls[::2]

lintangsutawika's avatar
lintangsutawika committed
824
825
826
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
827
828
829
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

830
831
832
833
834
835
836
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
                gold = doc[self._config.gold_alias]
            else:
                gold = self.doc_to_target(doc)

837
838
            for key, result in zip(self._metric_fn_list.keys(), results):
                _dict = self._metric_fn_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
839
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
840
                )
841

lintangsutawika's avatar
lintangsutawika committed
842
                result_dict = {**result_dict, **_dict}
843
        else:
lintangsutawika's avatar
lintangsutawika committed
844
845
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
846
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
847
            )
848
849
850
851
852
853
854

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
855
        return self._higher_is_better
856
857
858
859
860
861
862
863
864
865


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
866
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
867
868
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
869
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
870
                doc=doc,
871
                arguments=(ctx, " {}".format(choice)),
872
                idx=i,
873
874
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
875
876
            for i, choice in enumerate(doc["choices"])
        ]
877
878

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
879
880
881
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
906
class PerplexityTask(Task):
907
908
909
910
911
912
913
914
915
916

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
917
    def fewshot_context(self, doc, num_fewshot, rnd=None):
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
946
947
948
949
950
951
952
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
953
954
955

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
956
957
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))