base.py 31.3 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
thefazzer's avatar
thefazzer committed
3
import numpy as np
4
import random
Leo Gao's avatar
Leo Gao committed
5
import re
6
7
8
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
9
import datasets
10
import inspect
11
from sqlitedict import SqliteDict
12
from tqdm import tqdm
13
import torch
Leo Gao's avatar
Leo Gao committed
14
import torch.nn.functional as F
&'s avatar
& committed
15

16
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
17
from lm_eval import utils
18
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
19

Jason Phang's avatar
Jason Phang committed
20

Leo Gao's avatar
Leo Gao committed
21
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
22
23
24
    def __init__(self):
        self.cache_hook = CacheHook(None)

25
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
26
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
27
        """Compute log-likelihood of generating a continuation from a context.
Fabrizio Milo's avatar
Fabrizio Milo committed
28
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
29
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
30

Leo Gao's avatar
Leo Gao committed
31
32
33
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Fabrizio Milo's avatar
Fabrizio Milo committed
34
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
35
                empty context string.
Leo Gao's avatar
Leo Gao committed
36
            continuation: str
Fabrizio Milo's avatar
Fabrizio Milo committed
37
38
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
39
40
41
42
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
43
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
44
            isgreedy:
Jason Phang's avatar
Jason Phang committed
45
46
47
48
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

49
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
50
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
51
52
53
54
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
Fabrizio Milo's avatar
Fabrizio Milo committed
55
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
Jason Phang's avatar
Jason Phang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
88
89
90
        """
        pass

&'s avatar
& committed
91
    # TODO: Add an optional max length
92
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
93
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
94
95
96
97
98
99
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
100
            until: [str]
Fabrizio Milo's avatar
Fabrizio Milo committed
101
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
102
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
103
104
105
106
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
107
        """
Leo Gao's avatar
Leo Gao committed
108
109
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
110
    @classmethod
111
112
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
113
114
115
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
116

Leo Gao's avatar
Leo Gao committed
117
118
119
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
120

121
class BaseLM(LM):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

147
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
148
149
150
    def tok_encode(self, string: str):
        pass

151
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
152
153
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
154

155
    @abstractmethod
156
    def _model_generate(self, context, max_length, eos_token_id):
Fabrizio Milo's avatar
Fabrizio Milo committed
157
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
158

159
160
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
161
        """
162
163
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
164

165
        returns: a torch tensor of shape [batch, sequence, vocab] with the
166
        logits returned from the model
167
168
        """
        pass
169

Leo Gao's avatar
Leo Gao committed
170
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
Fabrizio Milo's avatar
Fabrizio Milo committed
193
194
195
196
197
198
199
200
201
202
203
204
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
205
206
207

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

208
209
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
Fabrizio Milo's avatar
Fabrizio Milo committed
210
211
212
213
            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

214
215
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
Fabrizio Milo's avatar
Fabrizio Milo committed
216

217
218
219
220
221
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

222
223
224
225
226
227
228
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
229
230
231
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
232
233
234
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
235
            return -len(toks), tuple(toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
236

237
        # TODO: automatic (variable) batch size detection for vectorization
Fabrizio Milo's avatar
Fabrizio Milo committed
238
        re_ord = utils.Reorderer(requests, _collate)
Fabrizio Milo's avatar
Fabrizio Milo committed
239
        for chunk in utils.chunks(
Fabrizio Milo's avatar
Fabrizio Milo committed
240
            tqdm(re_ord.get_reordered(), disable=disable_tqdm), self.batch_size
Fabrizio Milo's avatar
Fabrizio Milo committed
241
        ):
242
            inps = []
243
            cont_toks_list = []
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
260
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
261
                # gpt2    \               \
262
263
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
264
265
266

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
Fabrizio Milo's avatar
Fabrizio Milo committed
267
268
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
269
                ).to(self.device)
Fabrizio Milo's avatar
Fabrizio Milo committed
270
                (inplen,) = inp.shape
271
272
273
274

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
Fabrizio Milo's avatar
Fabrizio Milo committed
275
276
277
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
278

279
                # pad length from seq to padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
280
281
282
283
284
285
286
287
288
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
289

290
291
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
292
293
                inplens.append(inplen)

294
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
295
296
297
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
298

Fabrizio Milo's avatar
Fabrizio Milo committed
299
300
301
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
302

303
304
                # Slice to original seq length
                contlen = len(cont_toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
305
306
307
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
308

309
                # Check if per-token argmax is exactly equal to continuation
310
                greedy_tokens = logits.argmax(dim=-1)
Fabrizio Milo's avatar
Fabrizio Milo committed
311
312
313
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
314
315
                max_equal = (greedy_tokens == cont_toks).all()

316
317
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
Fabrizio Milo's avatar
Fabrizio Milo committed
318
319
320
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
321

322
                # Answer: (log prob, is-exact-match)
323
324
325
326
327
328
329
330
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

Fabrizio Milo's avatar
Fabrizio Milo committed
331
        return re_ord.get_original(res)
Fabrizio Milo's avatar
Fabrizio Milo committed
332

333
    def generate(self, requests):
334
335
336
337
338
339
340
341
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer(requests, _collate)

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        for request in tqdm(re_ord.get_reordered()):
            if len(request) == 2:
                # Unpack greedy sample request
                context, until, = request
                k, temperature = 1, 0.
                _model_generate_kwargs = {}
            elif len(request) == 4:
                # Unpack temperature sample request
                context, until, k, temperature = request
                for key in ["k", "temperature"]:
                    assert key in inspect.getfullargspec(self._model_generate).args, \
                        f"Model generation parameter '{key}' not accepted as an argument for _model_generate"
                _model_generate_kwargs = {"k": k, "temperature": temperature}
            else:
                raise AssertionError

358
359
360
361
362
363
364
            if isinstance(until, str):
                until = [until]
            (primary_until,) = self.tok_encode(until[0])

            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
365
            
366
367
            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until,
368
                **_model_generate_kwargs
369
370
371
372
373
374
375
376
            )
            
            generated_tokens = cont[:, context_enc.shape[1]:]
            s = [self.tok_decode(candidate) for candidate in generated_tokens]
            for term in until:
                s = [candidate.split(term)[0] for candidate in s]

            # partial caching
377
            self.cache_hook.add_partial("generate", (context, until, k, temperature), s)
378
379
380
            res.append(s)
        return re_ord.get_original(res)

381
    def greedy_until(self, requests):
Fabrizio Milo's avatar
Fabrizio Milo committed
382
        # TODO: implement fully general `until` that handles until that are
383
        #       multiple tokens or that span multiple tokens correctly
384
385

        # TODO: extract to TokenizedLM?
Albert Jiang's avatar
Albert Jiang committed
386
        return self.generate(requests)[0]
Leo Gao's avatar
Leo Gao committed
387

Leo Gao's avatar
Leo Gao committed
388

389
class Task(abc.ABC):
&'s avatar
&amp; committed
390
391
392
393
394
395
396
397
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
398

Jon Tow's avatar
Jon Tow committed
399
400
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
401
402
403
404
405
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
430
        self._training_docs = None
431
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
432

Jon Tow's avatar
Jon Tow committed
433
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
Fabrizio Milo's avatar
Fabrizio Milo committed
434
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
435
436
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
457
458
459
460
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
461
462
            data_dir=data_dir,
            cache_dir=cache_dir,
Fabrizio Milo's avatar
Fabrizio Milo committed
463
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
464
        )
sdtblck's avatar
sdtblck committed
465

466
467
468
469
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return False

470
    @abstractmethod
471
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
472
        """Whether the task has a training set"""
473
        pass
474

475
    @abstractmethod
476
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
477
478
479
        """Whether the task has a validation set"""
        pass

480
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
481
482
    def has_test_docs(self):
        """Whether the task has a test set"""
483
484
        pass

Leo Gao's avatar
Leo Gao committed
485
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
486
487
488
489
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
490
        return []
491

Leo Gao's avatar
Leo Gao committed
492
    def validation_docs(self):
493
494
495
496
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
497
        return []
498

Leo Gao's avatar
Leo Gao committed
499
    def test_docs(self):
500
501
502
503
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
504
        return []
Leo Gao's avatar
Leo Gao committed
505

Jon Tow's avatar
Jon Tow committed
506
507
508
509
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
510
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
511
512
513
514
515
516

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

517
    def fewshot_examples(self, k, rnd):
518
519
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
520

Leo Gao's avatar
Leo Gao committed
521
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
522

523
    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
524
525
526
527
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False
528

529
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
530
531
532
    def doc_to_text(self, doc):
        pass

533
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
534
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
535
        pass
Leo Gao's avatar
Leo Gao committed
536

537
    @abstractmethod
538
    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
539
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
540
541
        Requests which will be sent to the LM.

542
543
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
544
        :param ctx: str
Fabrizio Milo's avatar
Fabrizio Milo committed
545
            The context string, generated by fewshot_context. This includes the natural
546
            language description, as well as the few shot examples, and the question
Fabrizio Milo's avatar
Fabrizio Milo committed
547
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
548
        """
Leo Gao's avatar
Leo Gao committed
549
        pass
550

551
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
552
    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
553
554
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
555
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
556
557
558
559
560

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
561
        """
Leo Gao's avatar
Leo Gao committed
562
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
563

564
    @abstractmethod
565
566
    def aggregation(self):
        """
&'s avatar
&amp; committed
567
        :returns: {str: [metric_score] -> float}
Fabrizio Milo's avatar
Fabrizio Milo committed
568
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
569
            functions that aggregate a list of metric scores
570
571
572
        """
        pass

573
    @abstractmethod
574
575
576
    def higher_is_better(self):
        """
        :returns: {str: bool}
Fabrizio Milo's avatar
Fabrizio Milo committed
577
            A dictionary where keys are the names of submetrics and values are
578
579
580
581
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
582
    def fewshot_description(self):
583
        import warnings
Fabrizio Milo's avatar
Fabrizio Milo committed
584

585
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
586
            "`fewshot_description` will be removed in futures versions. Pass "
587
            "any custom descriptions to the `evaluate` function instead.",
Fabrizio Milo's avatar
Fabrizio Milo committed
588
589
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
590
591
        return ""

592
    @utils.positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
593
594
595
596
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
597
598
599
600
601
602
603
604
605
606
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
607
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
608
609
610
611
612
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
613
614
615
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
616
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
617
            "The `provide_description` arg will be removed in future versions. To prepend "
618
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
619
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
620
        )
621
622
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
623
624
625
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
626

627
        description = description + "\n\n" if description else ""
628

629
630
        if num_fewshot == 0:
            labeled_examples = ""
631
        else:
632
633
634
635
636
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
637
                    self._fewshot_docs = list(
Fabrizio Milo's avatar
Fabrizio Milo committed
638
639
640
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
641
                    )
642

643
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
644

645
646
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
647

Fabrizio Milo's avatar
Fabrizio Milo committed
648
649
650
651
652
653
654
655
656
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
657

658
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
659
660
661
        return description + labeled_examples + example


Jon Tow's avatar
Jon Tow committed
662
class MultipleChoiceTask(Task):
Leo Gao's avatar
Leo Gao committed
663
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
664
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
665

Leo Gao's avatar
Leo Gao committed
666
667
    def construct_requests(self, doc, ctx):
        lls = [
Fabrizio Milo's avatar
Fabrizio Milo committed
668
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
669
670
671
672
673
674
675
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

Fabrizio Milo's avatar
Fabrizio Milo committed
676
        acc = 1.0 if np.argmax(results) == gold else 0.0
677
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
Fabrizio Milo's avatar
Fabrizio Milo committed
678
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
679
680

        return {
Leo Gao's avatar
Leo Gao committed
681
682
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
683
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
684

Leo Gao's avatar
Leo Gao committed
685
686
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
687
688
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
689
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
690

Leo Gao's avatar
Leo Gao committed
691
692
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
693
694
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
695
696
697
        }


Jason Phang's avatar
Jason Phang committed
698
class PerplexityTask(Task, abc.ABC):
699
700
701
702
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return True

Jason Phang's avatar
Jason Phang committed
703
704
705
706
707
708
709
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

Fabrizio Milo's avatar
Fabrizio Milo committed
710
711
712
713
714
715
716
717
718
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
719
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
720
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
721
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
722
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
723
        )
724
725
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
726
727
728
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
729

Jason Phang's avatar
Jason Phang committed
730
731
732
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
733
734
735
736
737
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
738

739
740
741
    def doc_to_decontamination_query(self, doc):
        return doc

Jason Phang's avatar
Jason Phang committed
742
    def doc_to_text(self, doc):
743
        return ""
Jason Phang's avatar
Jason Phang committed
744
745

    def doc_to_target(self, doc):
746
        return doc
Jason Phang's avatar
Jason Phang committed
747
748
749

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
750
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
751
752
753
        return req

    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
754
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
755
        words = self.count_words(doc)
756
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
757
        return {
Leo Gao's avatar
Leo Gao committed
758
            "word_perplexity": (loglikelihood, words),
759
            "byte_perplexity": (loglikelihood, bytes_),
760
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
761
762
763
764
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
765
766
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
767
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
768
769
        }

770
771
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
772
        return len(doc.encode("utf-8"))
773
774
775

    @classmethod
    def count_words(cls, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
776
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
777
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
778

Jason Phang's avatar
Jason Phang committed
779

Leo Gao's avatar
Leo Gao committed
780
781
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
Fabrizio Milo's avatar
Fabrizio Milo committed
782
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
783
784


Leo Gao's avatar
Leo Gao committed
785
786
class CacheHook:
    def __init__(self, cachinglm):
Fabrizio Milo's avatar
Fabrizio Milo committed
787
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
788
789
790
791
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
Fabrizio Milo's avatar
Fabrizio Milo committed
792

Leo Gao's avatar
Leo Gao committed
793
794
795
796
797
798
799
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
800
801
class CachingLM:
    def __init__(self, lm, cache_db):
802
803
804
805
806
807
808
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
809
810
        self.lm = lm
        self.cache_db = cache_db
811
812
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
813
814
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
815
816
817
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
818
819
820
821
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
Fabrizio Milo's avatar
Fabrizio Milo committed
822

Leo Gao's avatar
Leo Gao committed
823
824
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
825
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
826
827
828
829
830
831
832
833
834
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
Fabrizio Milo's avatar
Fabrizio Milo committed
835

836
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
837
838
839
840
841
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
842
843
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
844
845
846
847

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
848
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
849
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
850
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
851
852

            return res
Fabrizio Milo's avatar
Fabrizio Milo committed
853

Leo Gao's avatar
Leo Gao committed
854
        return fn
Fabrizio Milo's avatar
Fabrizio Milo committed
855

Leo Gao's avatar
Leo Gao committed
856
857
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
858

Jason Phang's avatar
Jason Phang committed
859

860
REQUEST_RETURN_LENGTHS = {
Fabrizio Milo's avatar
Fabrizio Milo committed
861
862
    "loglikelihood": 2,
    "greedy_until": None,
863
    "generate": None,
Fabrizio Milo's avatar
Fabrizio Milo committed
864
    "loglikelihood_rolling": None,
865
866
867
}


868
class Request:
Leo Gao's avatar
Leo Gao committed
869
870
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
Fabrizio Milo's avatar
Fabrizio Milo committed
871
872
873
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
874

Leo Gao's avatar
Leo Gao committed
875
        self.request_type = request_type
876
877
        self.args = args
        self.index = index
Fabrizio Milo's avatar
Fabrizio Milo committed
878

879
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
880
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
881
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
882
883
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
884

885
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
886
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
887
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
888
        return Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
889

Leo Gao's avatar
Leo Gao committed
890
    def __eq__(self, other):
Fabrizio Milo's avatar
Fabrizio Milo committed
891
892
893
894
895
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
896

Leo Gao's avatar
Leo Gao committed
897
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
898
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
899

Jason Phang's avatar
Jason Phang committed
900

Leo Gao's avatar
Leo Gao committed
901
902
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
903
904
        def fn(*args):
            return Request(attr, args)
Fabrizio Milo's avatar
Fabrizio Milo committed
905

Leo Gao's avatar
Leo Gao committed
906
907
908
909
        return fn


rf = RequestFactory()