task.py 32 KB
Newer Older
1
2
3
4
import abc
from dataclasses import dataclass

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
from lm_eval.api.metrics import (
lintangsutawika's avatar
lintangsutawika committed
23
24
25
26
27
28
29
30
31
    METRIC_REGISTRY,
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
    get_metric,
    get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
32

lintangsutawika's avatar
lintangsutawika committed
33
from lm_eval.logger import eval_logger
34
from lm_eval.prompts import get_prompt
35
36
37
38
39
40
from lm_eval.filters import build_filter_ensemble


@dataclass
class TaskConfig(dict):

41
42
    task: str = None
    group: str = None
43
    names: str = None
lintangsutawika's avatar
lintangsutawika committed
44
    reference: str = None
lintangsutawika's avatar
lintangsutawika committed
45
46
47
    task_name: str = (
        None  # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
    )
lintangsutawika's avatar
lintangsutawika committed
48
    base_task: str = None
49
50
51
52
53
    dataset_path: str = None
    dataset_name: str = None
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
54
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
55

56
    template_aliases: str = None
57
58
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
59

60
61
    num_fewshot: int = 0
    batch_size: int = 1
62
63
    repeats: int = 1

64
65
66
67
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
    delimiter: str = "\n\n"
lintangsutawika's avatar
lintangsutawika committed
68
    filter_list: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
69
70
71
    normalization: str = (
        None  # TODO: add length-normalization of various types, mutual info
    )
72
73
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
74
    use_prompt: str = None
75

lintangsutawika's avatar
lintangsutawika committed
76
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
77

78
79
80
81
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
lintangsutawika's avatar
lintangsutawika committed
82
        if self.template_aliases is not None:
83
84
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
85

86
87
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
88

89
90
91
        # set "task_name" metadata field based on the "primary" name set
        if self.names:
            self.task_name = self.names[0]
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
108

109
110
111
112
113
114
115
116
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
152
        self._config = TaskConfig(**config) if config else TaskConfig()
153
154
155

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
156
157
158
            for name, components in self._config.get(
                "filters", [["none", ["take_first"]]]
            ):
159
160
161
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
162
163
164
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
lintangsutawika's avatar
lintangsutawika committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        if self.DATASET_PATH in ["json", "csv"]:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                data_files=self.DATASET_NAME,
                data_dir=data_dir,
                cache_dir=cache_dir,
                download_mode=download_mode,
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                data_dir=data_dir,
                cache_dir=cache_dir,
                download_mode=download_mode,
            )
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

244
245
246
247
248
249
250
251
252
253
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
254
            eval_logger.warning(
255
                "has_training_docs and has_validation_docs are False"
lintangsutawika's avatar
lintangsutawika committed
256
                "using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
257
            )
258
259
            return self.test_docs()

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

298
    def build_all_requests(self, limit=None, rank=None, world_size=None):
299
300
301
302
303
304
305
306
307
308
309
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
310
311
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
312
        ):
313
            # sample fewshot context #TODO: need to offset doc_id by rank now!
314
315
316
317
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
318
319
320
321
322
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
                metadata=(self._config["task_name"], doc_id, self._config.repeats),
            )
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
348
            The number of times each instance in a dataset is inferred on. Defaults to 1,
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
384
385
386
387
388
389
390
391
392
393
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:
416
            labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)
417
418

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
            # if self.has_training_docs():
            #     fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            # else:
            #     if self._fewshot_docs is None:
            #         self._fewshot_docs = list(
            #             self.validation_docs()
            #             if self.has_validation_docs()
            #             else self.test_docs()
            #         )

            #     fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

            #     # get rid of the doc that's the one we're evaluating, if it's in the fewshot
            #     fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            # labeled_examples = (
            #     "\n\n".join(
            #         [
            #             self.doc_to_text(doc) + self.doc_to_target(doc)
            #             for doc in fewshotex
            #         ]
            #     )
            #     + "\n\n"
            # )
443
444
445
446
447
448

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
449
450
451
452
453
454
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
455
456
457
458
459


class ConfigurableTask(Task):

    VERSION = "2.0"
460
    OUTPUT_TYPE = None
461
    CONFIG = None
462
463
464
465

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
466
        # Get pre-configured attributes
467
        self._config = self.CONFIG
468

469
470
        # Use new configurations if there was no preconfiguration
        if self._config is None:
471
            self._config = TaskConfig(**config)
472
473
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
474
            if config is not None:
475
                self._config.__dict__.update(config)
476

477
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
478
479
480
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
481
482
483
484

        if self._config.output_type is not None:
            self.OUTPUT_TYPE = self._config.output_type

485
486
487
488
489
490
491
492
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

        if self._config.metric_list is not None:
            self._metric_list = {}
493
            self._metric_kwargs = {}
494
495
            self._aggregation_list = {}
            self._higher_is_better = {}
lintangsutawika's avatar
lintangsutawika committed
496
            for metric_config in self._config.metric_list:
497

lintangsutawika's avatar
lintangsutawika committed
498
499
500
501
502
503
504
505
                metric_name = metric_config["metric"]
                aggregation = metric_config["aggregation"]
                higher_is_better = metric_config["higher_is_better"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
506

lintangsutawika's avatar
lintangsutawika committed
507
                self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
haileyschoelkopf's avatar
haileyschoelkopf committed
508

lintangsutawika's avatar
lintangsutawika committed
509
510
                if metric_name in METRIC_REGISTRY.keys():
                    self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
511
512
513
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
                    ]
lintangsutawika's avatar
lintangsutawika committed
514
                else:
515
                    self._higher_is_better[metric_name] = higher_is_better
lintangsutawika's avatar
lintangsutawika committed
516
517
518
519
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_list[metric_name] = metric_object
                        self._metric_kwargs[metric_name] = kwargs
haileyschoelkopf's avatar
haileyschoelkopf committed
520

lintangsutawika's avatar
lintangsutawika committed
521
                    except Exception:
lintangsutawika's avatar
lintangsutawika committed
522
523
524
525
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
526
527
528
529
530

        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
531
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
532
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
533
534
535
536
537
538
539
540
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
541
542
543
544
                        }
                        components.append([function["function"], kwargs])

                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
545
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
546
        else:
lintangsutawika's avatar
lintangsutawika committed
547
            self._filters = [build_filter_ensemble("none", [("none", None)])]
548
549

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
550
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
551
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
552
553
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
554
555
556
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
557
558
559
560
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
            )  # TODO: pass the correct docs in here
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

592
    def fewshot_docs(self):
lintangsutawika's avatar
lintangsutawika committed
593
        if (self._config.num_fewshot > 0) and (self._config.fewshot_split is None):
lintangsutawika's avatar
lintangsutawika committed
594
            eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
595
                "num_fewshot > 0 but fewshot_split is None. "
lintangsutawika's avatar
lintangsutawika committed
596
                "using preconfigured rule."
lintangsutawika's avatar
lintangsutawika committed
597
            )
598
599
            return super().fewshot_docs()

lintangsutawika's avatar
lintangsutawika committed
600
        elif self._config.fewshot_split is not None:
601
602
            return self.dataset[self._config.fewshot_split]

603
604
605
606
607
608
609
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

610
611
612
613
614
615
616
617
618
619
620
621
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
622
623
624

        if self.prompt is not None:
            doc_to_text = self.prompt
625
626
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
627

628
629
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
630
        elif callable(doc_to_text):
631
632
633
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
634
        else:
635
            print(type(doc_to_text))
636
            raise TypeError
637
638

    def doc_to_target(self, doc):
639
640
641

        if self.prompt is not None:
            doc_to_target = self.prompt
642
643
644
        else:
            doc_to_target = self._config.doc_to_target

645
646
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
647
        elif callable(doc_to_target):
648
649
650
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
651
652
        else:
            raise TypeError
653
654
655

    def construct_requests(self, doc, ctx, **kwargs):

656
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
657
            arguments = (ctx, self.doc_to_target(doc))
658
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
659
            arguments = (self.doc_to_target(doc),)
660
        elif self.OUTPUT_TYPE == "multiple_choice":
661
662
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
663
664
665
666
667
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
668
            request_list = [
669
670
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
671
                    doc=doc,
672
                    arguments=(ctx, " {}".format(choice)),
673
                    idx=i,
674
675
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
676
                for i, choice in enumerate(choices)
677
            ]
678
679
680
681
682
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
683
                # here mutual info refers to calculating
684
685
686
687
688
689
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
690
                            doc=doc,
691
692
693
694
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
695
                        for i, choice in enumerate(choices)
696
697
698
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
699

700
        elif self.OUTPUT_TYPE == "greedy_until":
lintangsutawika's avatar
lintangsutawika committed
701
            arguments = (ctx, self._config.delimiter)
lintangsutawika's avatar
lintangsutawika committed
702
703

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
704
705
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
706
707
708
709

    def process_results(self, doc, results):

        result_dict = {}
710
711
712
713
714
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
            result_dict = {"perplexity": ll, "accuracy": int(is_greedy)}
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
715
716
717
718
719
720
721
722
            (loglikelihood,) = results
            words = self.count_words(self.doc_to_target(doc))
            bytes_ = self.count_bytes(self.doc_to_target(doc))
            return {
                "word_perplexity": (loglikelihood, words),
                "byte_perplexity": (loglikelihood, bytes_),
                "bits_per_byte": (loglikelihood, bytes_),
            }
723
        elif self.OUTPUT_TYPE == "multiple_choice":
lintangsutawika's avatar
lintangsutawika committed
724
725
726
            lls = [
                res[0] for res in results
            ]  # only retain loglikelihoods, discard is_greedy
haileyschoelkopf's avatar
haileyschoelkopf committed
727
            gold = int(self.doc_to_target(doc))
728
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
729
730
731
732
733
734
735
736
737
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
            if (
                2 * len(choices) == len(lls)
                and "acc_mutual_info" in self._metric_list.keys()
            ):
738
739
740
741
742
743
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
744
745

            acc = 1.0 if np.argmax(lls) == gold else 0.0
746
747
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
748
749
750
751

            result_dict = {
                "acc": acc,
                "acc_norm": acc_norm,
752
753
754
755
756
757
            }

            # TODO: set which normalization metrics should be reported, and calculate them

            if "exact_match" in self._metric_list.keys():
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
758
759
760
761
                is_greedy = [
                    res[1] for res in results
                ]  # take only the `is_greedy` results
                is_greedy = is_greedy[gold]  # take value for the gold answer
762
763
764
                result_dict["exact_match"] = int(is_greedy)

            if "acc_mutual_info" in self._metric_list.keys():
lintangsutawika's avatar
lintangsutawika committed
765
766
767
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
768
769
770
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

771
772
773
774
775
776
777
778
779
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
                gold = doc[self._config.gold_alias]
            else:
                gold = self.doc_to_target(doc)

            for key, result in zip(self._metric_list.keys(), results):
                _dict = self._metric_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
780
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
781
                )
782

lintangsutawika's avatar
lintangsutawika committed
783
                result_dict = {**result_dict, **_dict}
784
        else:
lintangsutawika's avatar
lintangsutawika committed
785
786
787
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until'",
788
            )
789
790
791
792
793
794
795

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
796
        return self._higher_is_better
797
798
799
800
801
802
803
804
805
806


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
807
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
808
809
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
810
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
811
                doc=doc,
812
                arguments=(ctx, " {}".format(choice)),
813
                idx=i,
814
815
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
816
817
            for i, choice in enumerate(doc["choices"])
        ]
818
819

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
820
821
822
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
847
class PerplexityTask(Task):
848
849
850
851
852
853
854
855
856
857

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
858
    def fewshot_context(self, doc, num_fewshot, rnd=None):
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
887
888
889
890
891
892
893
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
894
895
896

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
897
898
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))