huggingface.py 48.8 KB
Newer Older
1
import copy
2
import os
3
4
5
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union

6
import torch
7
import torch.nn.functional as F
8
import transformers
9
10
11
12
13
from accelerate import Accelerator, DistributedType, find_executable_batch_size
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
14
15
16
17
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
18
19

from lm_eval import utils
baberabb's avatar
baberabb committed
20
from lm_eval.api.instance import Instance
21
22
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
Baber Abbasi's avatar
Baber Abbasi committed
23
from lm_eval.utils import Collator, stop_sequences_criteria
24

25

26
eval_logger = utils.eval_logger
27

lintangsutawika's avatar
lintangsutawika committed
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
52
53


54
@register_model("hf-auto", "hf", "huggingface")
55
class HFLM(LM):
56
57
58
59
60
61
62
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

63
    AUTO_MODEL_CLASS = None
64
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
65

66
67
    def __init__(
        self,
68
69
70
71
        pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2",
        backend: Optional[
            Literal["default", "causal", "seq2seq"]
        ] = "default",  # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
72
73
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
74
75
76
77
78
79
80
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
81
        truncation: Optional[bool] = False,
82
83
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
84
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
85
86
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
87
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
88
        use_fast_tokenizer: Optional[bool] = True,
89
        # arguments used for splitting a model across GPUs naively.
90
91
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
92
93
94
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
95
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
96
97
        # PEFT and quantization options
        peft: Optional[str] = None,
98
99
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
100
    ) -> None:
101
102
        super().__init__()

103
104
105
106
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
107
            )
108
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
109
110
111
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
112
            gpus = 0
113
114
115
116
117
118

            if tokenizer:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
119
            else:
120
121
122
123
124
125
126
                # Get tokenizer
                model_name = self._model.name_or_path
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    model_name,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
127
                )
128

129
        else:
130
131
132
133
134
135
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
            accelerator = Accelerator()
136
137
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
138
139
140
141
142
143
144

            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
                    + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
                    + ["mps", "mps:0"]
145
                )
146
                if device and device in device_list:
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
            else:
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
169
                self._device = torch.device(device)
170

171
172
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
173

174
            self._get_config(
175
176
177
178
179
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

180
181
182
183
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
                device_map_option=device_map_option,
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
                autogptq=autogptq,
                **kwargs,
200
201
            )

202
        # access self._model through self.model property outside this method
203
204
205
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
206

207
        if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
208
209
            # TODO: can remove this whole snippet except in the mps case, perhaps?
            if not (parallelize or autogptq or hasattr(self, "accelerator")):
210
211
212
213
214
215
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
216
217
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
218
219
220
221
222
                    )

        self._create_tokenizer(
            pretrained,
            tokenizer,
223
            revision=revision,
224
            trust_remote_code=trust_remote_code,
225
            use_fast_tokenizer=use_fast_tokenizer,
226
227
        )

lintangsutawika's avatar
lintangsutawika committed
228
229
        self.truncation = truncation

230
        self.vocab_size = self.tokenizer.vocab_size
231
232
233
234
235
236
237
238
        # select (or create) a pad token to use
        if self.tokenizer.pad_token:
            pass
        elif self.tokenizer.unk_token:
            self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
        elif self.tokenizer.eos_token:
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        else:
239
            if self.config.model_type == "qwen":
240
241
                # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
                self.tokenizer.pad_token = "<|endoftext|>"
242
243
244
245
246
247
248
249
250
251
            elif (
                self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
                or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
            ):
                # The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
                # The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
                # ---
                # Note that the world tokenizer class name, might change in the future for the final huggingface merge
                # https://github.com/huggingface/transformers/pull/26963
                assert self.tokenizer.pad_token_id == 0
252
253
            else:
                self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
254

255
256
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
257
258
259
260
261
262
263
264
265
266
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
        if isinstance(pretrained, str):
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
                if parallelize:
                    if accelerator.num_processes > 1:
                        raise RuntimeError(
                            "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                        )
                    else:
                        pass
                elif accelerator.num_processes == 1:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
282
                else:
283
284
285
286
287
288
289
                    if gpus > accelerator.num_processes:
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
290
291
292
293
294
295
296
                    assert (
                        accelerator.distributed_type
                        in [
                            DistributedType.FSDP,
                            DistributedType.MULTI_GPU,
                        ]
                    ), "Unsupported distributed type provided. Only DDP and FSDP are supported."
297
298
299
300
301
302
303
304
                    if accelerator.distributed_type == DistributedType.FSDP:
                        self._model = accelerator.prepare(self.model)
                    else:
                        self._model = accelerator.prepare_model(
                            self.model, evaluation_mode=True
                        )
                    self._device = torch.device(
                        f"cuda:{accelerator.local_process_index}"
305
                    )
306
                    self.accelerator = accelerator
307

308
309
                    if self.accelerator.is_local_main_process:
                        eval_logger.info(f"Using {gpus} devices with data parallelism")
310

311
312
313
314
315
316
317
318
319
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
320

321
322
323
324
325
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

326
327
328
329
330
331
332
333
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

334
335
336
337
338
339
340
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
341
342
343
344
345
346
347
348
349
350
351
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
352

353
    @property
Ethan Smith's avatar
Ethan Smith committed
354
    def max_gen_toks(self) -> int:
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

373
374
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
375
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
        """
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        # PEFT and quantization options
        peft: Optional[str] = None,
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

        if parallelize:
            model_kwargs.update(
                _get_accelerate_args(
473
                    device_map_option,  # TODO: phase out device_map_option?
474
475
476
477
478
                    max_memory_per_gpu,
                    max_cpu_memory,
                    offload_folder,
                )
            )
479
480
481
482
483
484
485
486
487
488
489
490
        elif "device_map" not in model_kwargs:
            # set a device_map to initialize model on the right GPU.
            # this is needed because it seems that the default behavior
            # for quantized models now seems to be device_map="auto"
            # which breaks data-parallel mode.
            if hasattr(self, "accelerator"):
                model_kwargs.update(
                    {"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}}
                )
            else:
                model_kwargs.update({"device_map": {"": str(self.device)}})

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

        if peft:
            if model_kwargs.get("load_in_4bit", None):
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
586
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
587
588
589
590
591
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
592
593
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
594
595
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
596

Benjamin Fattori's avatar
Benjamin Fattori committed
597
598
599
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
600
601
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
602
603
604
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
605
606
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
607
608
609
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
610
611
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
612
613
614
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
615
            for _ in range(5):
616
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
617

Benjamin Fattori's avatar
Benjamin Fattori committed
618
619
620
621
            return batch_size

        batch_size = forward_batch()

622
623
624
625
626
627
628
629
630
631
632
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
633
634
        return batch_size

baberabb's avatar
baberabb committed
635
636
637
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
638
        """ """
639
640
641
642
643
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                add_special_tokens = False
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                add_special_tokens = True
644
645

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
646

647
648
649
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
650

651
652
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
653
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
654
655
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
656
        padding_side: str = "left",
657
658
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
659
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
660
661
662
663
664
665
666
667
668
669
670
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
671
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
672
673
674
675
676
677
678
679
680
681
682
683
684
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

685
686
687
688
689
690
691
692
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
693
        :param inps: torch.Tensor
694
695
696
697
698
699
700
701
702
703
704
705
706
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
707
708
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
709
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
710
711
712
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
713
714
715
716
717
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
718
        # temperature = 0.0 if not set
719
720
721
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
722
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
723
        do_sample = generation_kwargs.get("do_sample", None)
Baber Abbasi's avatar
Baber Abbasi committed
724
725
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
726
727
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
728
            self.tokenizer, stop, context.shape[1], context.shape[0]
729
        )
730
        return self.model.generate(
731
            input_ids=context,
732
733
            max_length=max_length,
            stopping_criteria=stopping_criteria,
734
            pad_token_id=self.tokenizer.pad_token_id,
735
736
737
            use_cache=True,
            **generation_kwargs,
        )
738
739
740

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
741
742
743
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
744
745
746
747
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
748
749
750
751
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
752
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
753
754
            logits = logits[:contlen]

755
756
        return logits

baberabb's avatar
baberabb committed
757
758
759
    def _encode_pair(
        self, context: str, continuation: str
    ) -> Tuple[List[int], List[int]]:
760
761
762
763
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
764
765
766
767
768
769

        whole_enc = self.tok_encode(context + continuation, add_special_tokens=False)
        context_enc = self.tok_encode(context, add_special_tokens=False)

        # whole_enc = self.tok_encode(context + continuation)
        # context_enc = self.tok_encode(context, add_special_tokens=False)
770
771
772
773
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

baberabb's avatar
baberabb committed
774
    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
775
776
777
778
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
779
780
781
                context_enc, continuation_enc = (
                    [self.eot_token_id],
                    self.tok_encode(continuation),
782
                )
783
            else:
784
                context_enc, continuation_enc = self._encode_pair(context, continuation)
785
786
787
788
789

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

baberabb's avatar
baberabb committed
790
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
791
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
792
793
794
795
796
797
798
799
800

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

801
802
803
804
805
806
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
807
                        prefix_token=self.eot_token_id,
808
809
810
811
812
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
813
814

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
830
831
832
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
833
834
835
836
837
838
839
840
841
842
843
844
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
845

846
847
848
849
850
851
852
853
854
855
856
857
858
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
859
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
860
861
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
862

Ethan Smith's avatar
Ethan Smith committed
863
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
864
865
866
867
868
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
869
870
871
872
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
Baber Abbasi's avatar
Baber Abbasi committed
873
            """Defines the key for the sorted method"""
874
875
876
877
878
879
880
881
882
883
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
884
        re_ord = Collator(requests, sort_fn=_collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
885
886
887

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
888
889
890
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
891
892
893
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
894
895
896
897
            else 0
        )
        batch_fn = (
            self._batch_scheduler
898
899
900
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
901
            else None
902
903
        )

Baber Abbasi's avatar
Baber Abbasi committed
904
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
haileyschoelkopf's avatar
haileyschoelkopf committed
905
        pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
haileyschoelkopf's avatar
haileyschoelkopf committed
906
        for chunk in chunks:
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
926
                # how this all works (illustrated on a causal decoder-only setup):
927
928
929
930
931
932
933
934
935
936
937
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
938
939
                        device=self.device,
                    )
940
941
942
943
944
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
945
                        device=self.device,
946
                    )
947
                    (inplen,) = inp.shape
948
949
950
951

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

952
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
953
                        (continuation_enc)[-self.max_length :],
954
955
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
956
                        dtype=torch.long,
957
958
                        device=self.device,
                    )
959
960
                    (contlen,) = cont.shape

961
962
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
963
964
965
966
967
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
968

haileyschoelkopf's avatar
haileyschoelkopf committed
969
970
971
972
973
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
974
975
976
977

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
978

979
980
981
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
982
983
984
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
985
986
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
987
988
989
990
991
992
993
994
995
996
997
998
999
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1000
1001
1002

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1003
            )  # [batch, padding_length (inp or cont), vocab]
1004
1005
1006
1007
1008
1009

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1010
                # take only logits in the continuation
1011
                # (discard context toks if decoder-only ; discard right-padding)
1012
1013
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1014
                ctx_len = (
1015
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
1016
1017
1018
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
1019
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1020
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1021
1022
1023

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
1024
1025
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
1026
                ).unsqueeze(0)  # [1, seq]
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
1040
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)
haileyschoelkopf's avatar
haileyschoelkopf committed
1041
1042
1043
                pbar.update(1)

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1044

1045
1046
        return re_ord.get_original(res)

baberabb's avatar
baberabb committed
1047
    def generate_until(self, requests: List[Instance]) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1048
        res = []
1049
1050

        def _collate(x):
Baber Abbasi's avatar
Baber Abbasi committed
1051
            """Defines the key for the sorted method"""
1052
1053
1054
1055
1056
1057
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
1058
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
1059
            return -len(toks), x[0]
1060

1061
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
Baber Abbasi's avatar
Baber Abbasi committed
1062
        adaptive_batch_size = None
1063
1064
1065
1066
1067
1068
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1069
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1082

Baber Abbasi's avatar
Baber Abbasi committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        re_ords = Collator([reg.args for reg in requests], _collate, grouping=True)
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [kwargs]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1107
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1108
                )
Baber Abbasi's avatar
Baber Abbasi committed
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
            if not until:
                until = [self.tok_decode(self.eot_token_id)]
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1132

Baber Abbasi's avatar
Baber Abbasi committed
1133
1134
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1135

Baber Abbasi's avatar
Baber Abbasi committed
1136
1137
1138
1139
1140
1141
1142
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1143

Baber Abbasi's avatar
Baber Abbasi committed
1144
1145
1146
1147
1148
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    cont_toks = cont_toks[context_enc.shape[1] :]
1149

Baber Abbasi's avatar
Baber Abbasi committed
1150
                s = self.tok_decode(cont_toks)
1151

Baber Abbasi's avatar
Baber Abbasi committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1165

1166
        pbar.close()
1167

Baber Abbasi's avatar
Baber Abbasi committed
1168
        return res