main.py 3.87 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
2
import argparse
import json
Leo Gao's avatar
Leo Gao committed
3
import logging
4
import fnmatch
Leo Gao's avatar
Leo Gao committed
5

6
from lm_eval import tasks, evaluator
Jason Phang's avatar
lib  
Jason Phang committed
7

Leo Gao's avatar
Leo Gao committed
8
logging.getLogger("openai").setLevel(logging.WARNING)
Leo Gao's avatar
Leo Gao committed
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
            if len(fnmatch.filter(self.choices, value)) == 0:
                return False

        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice

Jason Phang's avatar
Jason Phang committed
26
27
28
29
def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', required=True)
    parser.add_argument('--model_args', default="")
30
    parser.add_argument('--tasks', default=None, choices=MultiChoice(tasks.ALL_TASKS))
Jason Phang's avatar
Jason Phang committed
31
    parser.add_argument('--provide_description', action="store_true")
Leo Gao's avatar
Leo Gao committed
32
    parser.add_argument('--num_fewshot', type=int, default=0)
Leo Gao's avatar
Leo Gao committed
33
    parser.add_argument('--batch_size', type=int, default=None)
Leo Gao's avatar
Leo Gao committed
34
    parser.add_argument('--device', type=str, default=None)
Jason Phang's avatar
Jason Phang committed
35
    parser.add_argument('--output_path', default=None)
Leo Gao's avatar
Leo Gao committed
36
    parser.add_argument('--limit', type=int, default=None)
Leo Gao's avatar
Leo Gao committed
37
    parser.add_argument('--no_cache', action="store_true")
38
    parser.add_argument('--decontaminate', action="store_true")
researcher2's avatar
researcher2 committed
39
40
    parser.add_argument('--decontaminate_ngrams_path', default=None)
    parser.add_argument('--decontaminate_ngrams_n_size', type=int, default=None)
researcher2's avatar
researcher2 committed
41
    parser.add_argument('--description_dict_path', default=None)    
42

Jason Phang's avatar
Jason Phang committed
43
44
    return parser.parse_args()

45
46
47
def ensure_correct_decontamination_params(args):
    valid = True
    if args.decontaminate:
researcher2's avatar
researcher2 committed
48
        if not args.decontaminate_ngrams_n_size:
49
50
            print("Please specify n size of training set n-grams. (--ngrams_n_size)")
            valid = False
researcher2's avatar
researcher2 committed
51
        if not args.decontaminate_ngrams_path:
52
53
54
55
56
57
58
59
60
61
62
63
64
65
            print("Please specify path containing training set n-grams. (--ngrams_path)")
            valid = False

    return valid

# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return list(task_names)

66
def main():
Jason Phang's avatar
Jason Phang committed
67
    args = parse_args()
68
69
    if not ensure_correct_decontamination_params(args):
        return
70
        
71
    assert not args.provide_description  # not implemented
Leo Gao's avatar
Leo Gao committed
72
73
74
    
    if args.limit:
        print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
Leo Gao's avatar
Leo Gao committed
75

76
    if args.tasks is None:
researcher2's avatar
researcher2 committed
77
        task_names = tasks.ALL_TASKS
Jason Phang's avatar
Jason Phang committed
78
    else:
79
        task_names = pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
Leo Gao's avatar
Leo Gao committed
80

81
82
    print(f"Selected Tasks: {task_names}")

83
84
85
86
87
    description_dict = {}
    if args.description_dict_path:
        with open(args.description_dict_path, 'r') as f:
            description_dict = json.load(f)

88
    results = evaluator.simple_evaluate(
89
90
        model=args.model,
        model_args=args.model_args,
91
        tasks=task_names,
92
93
94
95
96
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
        device=args.device,
        no_cache=args.no_cache,
        limit=args.limit,
97
98
        description_dict=description_dict,
        decontaminate=args.decontaminate,
researcher2's avatar
researcher2 committed
99
100
        decontaminate_ngrams_path=args.decontaminate_ngrams_path,
        decontaminate_ngrams_n_size=args.decontaminate_ngrams_n_size
101
    )
102
103

    dumped = json.dumps(results, indent=2)    
Jason Phang's avatar
Jason Phang committed
104
    print(dumped)
105

Jason Phang's avatar
Jason Phang committed
106
107
108
    if args.output_path:
        with open(args.output_path, "w") as f:
            f.write(dumped)
Jason Phang's avatar
Jason Phang committed
109

110
111
112
113
    print(
        f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
        f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}"
    )
114
    print(evaluator.make_table(results))
Jason Phang's avatar
lib  
Jason Phang committed
115

116

Jason Phang's avatar
Jason Phang committed
117
if __name__ == "__main__":
Jason Phang's avatar
lib  
Jason Phang committed
118
    main()