metrics.py 20.3 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

3
import logging
&'s avatar
& committed
4
import math
5
import os
6
import random
7
8
import re
import string
9
from collections.abc import Iterable
10
from typing import Callable, List, Optional, Sequence, TypeVar
11
12
13

import numpy as np
import sacrebleu
&'s avatar
& committed
14

15
from lm_eval.api.registry import register_aggregation, register_metric
16

lintangsutawika's avatar
lintangsutawika committed
17

18
19
T = TypeVar("T")

Lintang Sutawika's avatar
Lintang Sutawika committed
20
eval_logger = logging.getLogger(__name__)
21

22

23
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
24
25
26
27
28
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


29
30
31
32
33
34
35
@register_aggregation("nanmean")
def nanmean(arr):
    if len(arr) == 0 or all(np.isnan(arr)):
        return np.nan
    return np.nanmean(arr)


36
37
38
39
40
41
42
43
44
45
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


46
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
47
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
63
64
@register_aggregation("f1")
def f1_score(items):
65
66
    from sklearn.metrics import f1_score

haileyschoelkopf's avatar
haileyschoelkopf committed
67
68
69
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
70
    fscore = f1_score(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
71
72
73
74
75
76

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
77
78
    from sklearn.metrics import matthews_corrcoef

haileyschoelkopf's avatar
haileyschoelkopf committed
79
80
81
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
82
    return matthews_corrcoef(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
83
84


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
134
135
136
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
Lintang Sutawika's avatar
Lintang Sutawika committed
137
138
    bs, num_class = np.array(predictions).shape

Lintang Sutawika's avatar
Lintang Sutawika committed
139
    gold = list(gold)
Lintang Sutawika's avatar
Lintang Sutawika committed
140
    gold_one_hot = np.eye(num_class)[gold]
Lintang Sutawika's avatar
Lintang Sutawika committed
141
142
143
144
145
146
147
148
149
150
151
152
153
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


154
155
156
157
158
159
160
161
162
163
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


164
165
166
167
168
169
170
171
172
173
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


174
175
176
177
178
179
180
181
182
183
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
### the code used in the `exact_match_hf_evaluate` function is ported from
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
Baber's avatar
Baber committed
203
204
205
206
207
208
209
    predictions: Iterable[str] | str,
    references: Iterable[str] | str,
    regexes_to_ignore: list[str] | None = None,
    ignore_case: bool = False,
    ignore_punctuation: bool = False,
    ignore_numbers: bool = False,
    multi_target: bool = False,
210
):
Baber's avatar
Baber committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    """
    Compute exact match scores between predictions and references.

    This function computes the exact match score by comparing predictions
    and references. It supports optional preprocessing steps such as ignoring
    case, punctuation, numbers, and specific regex patterns.

    Note:
        predictions and references can have different lengths.
        numpy broadcasting rule applies

    Args:
        predictions (Iterable[str] | str): The predicted strings to evaluate.
        references (Iterable[str] | str): The reference strings to compare against.
        regexes_to_ignore (list[str], optional): A list of regex patterns to remove
            from both predictions and references before comparison. Defaults to None.
        ignore_case (bool, optional): If True, ignores case differences during comparison.
            Defaults to False.
        ignore_punctuation (bool, optional): If True, removes punctuation from strings
            before comparison. Defaults to False.
        ignore_numbers (bool, optional): If True, removes numeric characters from strings
            before comparison. Defaults to False.
        multi_target (bool, optional): If True, returns 1.0 if any prediction matches any
            reference, otherwise 0.0. Defaults to False.

    Returns:
        dict: A dictionary containing the exact match score:
            - "exact_match" (float): The mean exact match score or 1.0/0.0 if `multi_target` is True.
    """
    predictions, references = list(predictions), list(references)
    assert len(predictions) == len(references) if not multi_target else True, (
        "predictions and references must have the same length unless `multi_target` is True"
    )

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    if regexes_to_ignore is not None:
        for s in regexes_to_ignore:
            predictions = np.array([re.sub(s, "", x) for x in predictions])
            references = np.array([re.sub(s, "", x) for x in references])
    else:
        predictions = np.asarray(predictions)
        references = np.asarray(references)

    if ignore_case:
        predictions = np.char.lower(predictions)
        references = np.char.lower(references)

    if ignore_punctuation:
        repl_table = string.punctuation.maketrans("", "", string.punctuation)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    if ignore_numbers:
        repl_table = string.digits.maketrans("", "", string.digits)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    score_list = predictions == references

Baber's avatar
Baber committed
269
270
271
272
273
    return {
        "exact_match": np.mean(score_list)
        if not multi_target
        else float(np.any(score_list))
    }
274
275
276


###
277
278


279
280
281
282
283
284
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
Baber's avatar
Baber committed
285
286
def exact_match_fn(references: list[str], predictions: list[str], **kwargs):
    return exact_match_hf_evaluate(predictions, references, **kwargs)
287
288


289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
328

Leo Gao's avatar
Leo Gao committed
329
def pop_stddev(arr):
330
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
331
332
333
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


334
def sample_stddev(arr: Sequence[T]) -> float:
335
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
336
337
338
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
339
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
340
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
341
342


Baber Abbasi's avatar
Baber Abbasi committed
343
344
345
346
347
348
349
350
351
352
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
353
354
355
356
357
358
359
360
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
361
362
363


@register_metric(
364
    metric="f1",
365
366
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
367
    aggregation="f1",
368
)
369
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
370
    return items
371
372


373
374
375
@register_metric(
    metric="bleu",
    higher_is_better=True,
376
    output_type="generate_until",
377
378
379
380
381
382
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


383
384
385
@register_metric(
    metric="chrf",
    higher_is_better=True,
386
    output_type="generate_until",
387
388
389
390
391
392
393
394
395
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
396
    output_type="generate_until",
397
398
399
400
401
402
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
445
446
447
448
449
450
451
452
453
454

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
495
class _bootstrap_internal:
496
497
498
499
500
501
    """
    Pool worker: `(i, xs)` → `n` bootstrap replicates
    of `f(xs)`using a RNG seeded with `i`.
    """

    def __init__(self, f: Callable[[Sequence[T]], float], n: int) -> None:
Leo Gao's avatar
Leo Gao committed
502
503
        self.f = f
        self.n = n
504

505
    def __call__(self, v: tuple[int, Sequence[T]]) -> list[float]:
Leo Gao's avatar
Leo Gao committed
506
507
508
509
510
511
512
513
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
514

515
516
517
518
519
520
521
def _bootstrap_internal_no_mp(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> list[float]:
    """
    Single-process fallback: compute `iters` bootstrap replicates
    of statistic`f(xs)`, chunked (≤ 1000 draws).
    """
Leo Gao's avatar
Leo Gao committed
522
    res = []
523
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
524
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    print(f"bootstrapping for stddev: {f.__name__}")

    # A single loop replaces the multiprocessing pool.
    for i in tqdm(range(iters // chunk_size)):
        rnd = random.Random(i)
        for _ in range(chunk_size):
            res.append(f(rnd.choices(xs, k=len(xs))))

    return res


def bootstrap_stderr(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> float:
    """
    Bootstrap estimate of the standard error of statistic `f(xs)`
    using up to `iters` resamples, chunked (≤ 1000 draws)

    Executes in parallel unless the env-var `DISABLE_MULTIPROC` is set;
    """
    if not os.getenv("DISABLE_MULTIPROC"):
        import multiprocessing as mp

        # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
        # equivalent to stderr calculated without Bessel's correction in the stddev.
        # Unfortunately, I haven't been able to figure out what the right correction is
        # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
        # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
        # Thankfully, shouldn't matter because our samples are pretty big usually anyways
        res = []
        chunk_size = min(1000, iters)
        from tqdm import tqdm

        print("bootstrapping for stddev:", f.__name__)
560
561
562
563
564
565
566
567
568
569
        with mp.Pool(mp.cpu_count()) as pool:
            for bootstrap in tqdm(
                pool.imap(
                    _bootstrap_internal(f, chunk_size),
                    [(i, xs) for i in range(iters // chunk_size)],
                ),
                total=iters // chunk_size,
            ):
                # sample w replacement
                res.extend(bootstrap)
570
571
572
    else:
        res = _bootstrap_internal_no_mp(f, xs, iters)

Leo Gao's avatar
Leo Gao committed
573
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
574
575


576
577
578
579
580
581
582
583
584
585
586
587
def stderr_for_metric(
    metric: Callable[[Sequence[T]], float], bootstrap_iters: int
) -> Optional[Callable[[Sequence[T]], float]]:
    """
    Return a function that estimates the standard error of `metric(xs)`.

    * If `bootstrap_iters > 0` and the metric is in the pre-approved
      bootstrappable list, use `bootstrap_stderr` with that many draws.
    * If the metric has a closed-form SE (e.g. `mean`, `acc_all`), use it.
    * Otherwise, return `None`.
    """

588
589
590
591
    if bootstrap_iters <= 0:
        # return no function (don't compute stderr) if bootstrap iters = 0
        return None

592
593
594
595
596
597
598
599
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
600
        nanmean,
601
602
603
604
605
606
607
608
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
609
610
611
612
613
614
615
616
617
618


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
619
620
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
621
622
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
623
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
624
625
    ) / (sum(sizes) - len(sizes))

626
    return np.sqrt(pooled_sample_var / sum(sizes))
627
628
629


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
Baber Abbasi's avatar
Baber Abbasi committed
630
631
632
    assert metrics is not None, (
        "Need to pass a list of each subtask's metric for this stderr aggregation"
    )
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
665
    if not weight_by_size:
666
667
668
669
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

Lintang Sutawika's avatar
Lintang Sutawika committed
670
    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)