metrics.py 18.3 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import os
4
import random
5
6
import re
import string
7
from collections.abc import Iterable
8
from typing import Callable, List, Optional, Sequence, TypeVar
9
10
11

import numpy as np
import sacrebleu
&'s avatar
& committed
12

13
from lm_eval.api.registry import register_aggregation, register_metric
14

lintangsutawika's avatar
lintangsutawika committed
15

16
17
T = TypeVar("T")

Lintang Sutawika's avatar
Lintang Sutawika committed
18
eval_logger = logging.getLogger(__name__)
19

20

21
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
22
23
24
25
26
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


27
28
29
30
31
32
33
@register_aggregation("nanmean")
def nanmean(arr):
    if len(arr) == 0 or all(np.isnan(arr)):
        return np.nan
    return np.nanmean(arr)


34
35
36
37
38
39
40
41
42
43
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


44
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
45
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
61
62
@register_aggregation("f1")
def f1_score(items):
63
64
    from sklearn.metrics import f1_score

haileyschoelkopf's avatar
haileyschoelkopf committed
65
66
67
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
68
    fscore = f1_score(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
69
70
71
72
73
74

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
75
76
    from sklearn.metrics import matthews_corrcoef

haileyschoelkopf's avatar
haileyschoelkopf committed
77
78
79
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
80
    return matthews_corrcoef(golds, preds)
haileyschoelkopf's avatar
haileyschoelkopf committed
81
82


83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
132
133
134
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
Lintang Sutawika's avatar
Lintang Sutawika committed
135
136
    bs, num_class = np.array(predictions).shape

Lintang Sutawika's avatar
Lintang Sutawika committed
137
    gold = list(gold)
Lintang Sutawika's avatar
Lintang Sutawika committed
138
    gold_one_hot = np.eye(num_class)[gold]
Lintang Sutawika's avatar
Lintang Sutawika committed
139
140
141
142
143
144
145
146
147
148
149
150
151
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


152
153
154
155
156
157
158
159
160
161
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


162
163
164
165
166
167
168
169
170
171
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


172
173
174
175
176
177
178
179
180
181
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
### the code used in the `exact_match_hf_evaluate` function is ported from
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
    predictions,
    references,
    regexes_to_ignore=None,
    ignore_case=False,
    ignore_punctuation=False,
    ignore_numbers=False,
):
    if regexes_to_ignore is not None:
        for s in regexes_to_ignore:
            predictions = np.array([re.sub(s, "", x) for x in predictions])
            references = np.array([re.sub(s, "", x) for x in references])
    else:
        predictions = np.asarray(predictions)
        references = np.asarray(references)

    if ignore_case:
        predictions = np.char.lower(predictions)
        references = np.char.lower(references)

    if ignore_punctuation:
        repl_table = string.punctuation.maketrans("", "", string.punctuation)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    if ignore_numbers:
        repl_table = string.digits.maketrans("", "", string.digits)
        predictions = np.char.translate(predictions, table=repl_table)
        references = np.char.translate(references, table=repl_table)

    score_list = predictions == references

    return {"exact_match": np.mean(score_list)}


###
236
237


238
239
240
241
242
243
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
244
def exact_match_fn(**kwargs):
245
    return exact_match_hf_evaluate(**kwargs)
246
247


248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
287

Leo Gao's avatar
Leo Gao committed
288
def pop_stddev(arr):
289
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
290
291
292
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


293
def sample_stddev(arr: Sequence[T]) -> float:
294
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
295
296
297
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
298
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
299
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
300
301


Baber Abbasi's avatar
Baber Abbasi committed
302
303
304
305
306
307
308
309
310
311
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
312
313
314
315
316
317
318
319
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
320
321
322


@register_metric(
323
    metric="f1",
324
325
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
326
    aggregation="f1",
327
)
328
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
329
    return items
330
331


332
333
334
@register_metric(
    metric="bleu",
    higher_is_better=True,
335
    output_type="generate_until",
336
337
338
339
340
341
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


342
343
344
@register_metric(
    metric="chrf",
    higher_is_better=True,
345
    output_type="generate_until",
346
347
348
349
350
351
352
353
354
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
355
    output_type="generate_until",
356
357
358
359
360
361
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
404
405
406
407
408
409
410
411
412
413

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
454
class _bootstrap_internal:
455
456
457
458
459
460
    """
    Pool worker: `(i, xs)` → `n` bootstrap replicates
    of `f(xs)`using a RNG seeded with `i`.
    """

    def __init__(self, f: Callable[[Sequence[T]], float], n: int) -> None:
Leo Gao's avatar
Leo Gao committed
461
462
        self.f = f
        self.n = n
463

464
    def __call__(self, v: tuple[int, Sequence[T]]) -> list[float]:
Leo Gao's avatar
Leo Gao committed
465
466
467
468
469
470
471
472
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
473

474
475
476
477
478
479
480
def _bootstrap_internal_no_mp(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> list[float]:
    """
    Single-process fallback: compute `iters` bootstrap replicates
    of statistic`f(xs)`, chunked (≤ 1000 draws).
    """
Leo Gao's avatar
Leo Gao committed
481
    res = []
482
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
483
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
484

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    print(f"bootstrapping for stddev: {f.__name__}")

    # A single loop replaces the multiprocessing pool.
    for i in tqdm(range(iters // chunk_size)):
        rnd = random.Random(i)
        for _ in range(chunk_size):
            res.append(f(rnd.choices(xs, k=len(xs))))

    return res


def bootstrap_stderr(
    f: Callable[[Sequence[T]], float], xs: Sequence[T], iters: int
) -> float:
    """
    Bootstrap estimate of the standard error of statistic `f(xs)`
    using up to `iters` resamples, chunked (≤ 1000 draws)

    Executes in parallel unless the env-var `DISABLE_MULTIPROC` is set;
    """
    if not os.getenv("DISABLE_MULTIPROC"):
        import multiprocessing as mp

        pool = mp.Pool(mp.cpu_count())
        # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
        # equivalent to stderr calculated without Bessel's correction in the stddev.
        # Unfortunately, I haven't been able to figure out what the right correction is
        # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
        # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
        # Thankfully, shouldn't matter because our samples are pretty big usually anyways
        res = []
        chunk_size = min(1000, iters)
        from tqdm import tqdm

        print("bootstrapping for stddev:", f.__name__)
        for bootstrap in tqdm(
            pool.imap(
                _bootstrap_internal(f, chunk_size),
                [(i, xs) for i in range(iters // chunk_size)],
            ),
            total=iters // chunk_size,
        ):
            # sample w replacement
            res.extend(bootstrap)

        pool.close()
    else:
        res = _bootstrap_internal_no_mp(f, xs, iters)

Leo Gao's avatar
Leo Gao committed
534
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
535
536


537
538
539
540
541
542
543
544
545
546
547
548
def stderr_for_metric(
    metric: Callable[[Sequence[T]], float], bootstrap_iters: int
) -> Optional[Callable[[Sequence[T]], float]]:
    """
    Return a function that estimates the standard error of `metric(xs)`.

    * If `bootstrap_iters > 0` and the metric is in the pre-approved
      bootstrappable list, use `bootstrap_stderr` with that many draws.
    * If the metric has a closed-form SE (e.g. `mean`, `acc_all`), use it.
    * Otherwise, return `None`.
    """

549
550
551
552
    if bootstrap_iters <= 0:
        # return no function (don't compute stderr) if bootstrap iters = 0
        return None

553
554
555
556
557
558
559
560
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
561
        nanmean,
562
563
564
565
566
567
568
569
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
570
571
572
573
574
575
576
577
578
579


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
580
581
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
582
583
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
584
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
585
586
    ) / (sum(sizes) - len(sizes))

587
    return np.sqrt(pooled_sample_var / sum(sizes))
588
589
590


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
Baber Abbasi's avatar
Baber Abbasi committed
591
592
593
    assert metrics is not None, (
        "Need to pass a list of each subtask's metric for this stderr aggregation"
    )
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
626
    if not weight_by_size:
627
628
629
630
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

Lintang Sutawika's avatar
Lintang Sutawika committed
631
    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)