vllm_causallms.py 30.8 KB
Newer Older
Baber's avatar
types  
Baber committed
1
2
from __future__ import annotations

3
import copy
4
import gc
Lintang Sutawika's avatar
Lintang Sutawika committed
5
import logging
6
import os
Baber Abbasi's avatar
Baber Abbasi committed
7
from importlib.metadata import version
8
from importlib.util import find_spec
9
10
11
from multiprocessing import Process, Queue
from queue import Empty
from time import sleep
Baber's avatar
types  
Baber committed
12
from typing import TYPE_CHECKING, Literal
13

14
import jinja2
15
from more_itertools import distribute
Baber Abbasi's avatar
Baber Abbasi committed
16
from packaging.version import parse as parse_version
17
18
from tqdm import tqdm

baberabb's avatar
baberabb committed
19
from lm_eval.api.instance import Instance
20
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
21
from lm_eval.api.registry import register_model
22
23
24
25
from lm_eval.models.utils import (
    Collator,
    configure_pad_token,
    handle_stop_sequences,
26
    postprocess_generated_text,
27
28
    undistribute,
)
29
30
31
32
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
)
33

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
34

35
try:
36
    import ray
37
    from vllm import LLM, SamplingParams, TokensPrompt
38
    from vllm.lora.request import LoRARequest
baberabb's avatar
baberabb committed
39
    from vllm.transformers_utils.tokenizer import get_tokenizer
40
    from vllm.utils import get_open_port
41
42
43

    if parse_version(version("vllm")) >= parse_version("0.8.3"):
        from vllm.entrypoints.chat_utils import resolve_hf_chat_template
44
45
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
46

47
48
if TYPE_CHECKING:
    pass
bcicc's avatar
bcicc committed
49

Lintang Sutawika's avatar
Lintang Sutawika committed
50
eval_logger = logging.getLogger(__name__)
baberabb's avatar
baberabb committed
51

baberabb's avatar
baberabb committed
52

53
54
def _vllm_mp_worker(
    model_args: dict,
Baber's avatar
types  
Baber committed
55
    sampling_params: SamplingParams,
56
    requests: list[list[int]],
Baber's avatar
types  
Baber committed
57
58
    lora_request: LoRARequest,
    result_queue: Queue,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    dp_size: int,
    local_dp_rank: int,
    dp_master_port: int,
    dp_master_ip: str = "127.0.0.1",
) -> None:
    """
    Worker process for vLLM multiprocessing.
    Initializes a vLLM engine, processes requests, and puts results or errors
    onto the result_queue.
    """

    if not requests:
        result_queue.put((local_dp_rank, []))
        return None

    os.environ["VLLM_DP_RANK"] = os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
    os.environ["VLLM_DP_SIZE"] = str(dp_size)
    os.environ["VLLM_DP_MASTER_IP"] = str(dp_master_ip)
    os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)

    llm = None
    try:
        llm = LLM(**model_args)
        res = llm.generate(
83
            [TokensPrompt(prompt_token_ids=request) for request in requests],
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            sampling_params=sampling_params,
            lora_request=lora_request,
        )
        # Give engines time to pause their processing loops before exiting."
        sleep(1)
        result_queue.put((local_dp_rank, res))

    except Exception as e:
        error_message = f"Worker {local_dp_rank} failed during generation: {type(e).__name__}: {str(e)}"
        eval_logger.error(error_message, exc_info=True)
        result_queue.put((local_dp_rank, {"error": error_message}))

    finally:
        if llm is not None:
            try:
                del llm
                gc.collect()
            except Exception as e_cleanup:
                eval_logger.warning(
                    f"Worker {local_dp_rank} encountered an error during LLM cleanup: {type(e_cleanup).__name__}: {str(e_cleanup)}",
                    exc_info=True,
                )

    return None


baberabb's avatar
baberabb committed
110
@register_model("vllm")
111
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
112
113
114
115
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
116
        pretrained: str,
baberabb's avatar
baberabb committed
117
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
Baber's avatar
types  
Baber committed
118
119
120
        revision: str | None = None,
        trust_remote_code: bool | None = False,
        tokenizer: str | None = None,
baberabb's avatar
baberabb committed
121
        tokenizer_mode: Literal["auto", "slow"] = "auto",
Baber's avatar
types  
Baber committed
122
123
124
        tokenizer_revision: str | None = None,
        add_bos_token: bool | None = False,
        prefix_token_id: int | None = None,
baberabb's avatar
baberabb committed
125
        tensor_parallel_size: int = 1,
Baber's avatar
types  
Baber committed
126
        quantization: str | None = None,
baberabb's avatar
baberabb committed
127
128
        max_gen_toks: int = 256,
        swap_space: int = 4,
Baber's avatar
types  
Baber committed
129
130
131
132
        batch_size: str | int = 1,
        max_batch_size: int | None = None,
        max_length: int | None = None,
        max_model_len: int | None = None,
baberabb's avatar
baberabb committed
133
        seed: int = 1234,
134
        gpu_memory_utilization: float = 0.9,
135
        data_parallel_size: int = 1,
Baber's avatar
types  
Baber committed
136
        lora_local_path: str | None = None,
137
138
        # VLLM: enable thinking tags in the prompt.
        enable_thinking: bool = True,
Baber's avatar
Baber committed
139
        chat_template_args: dict | None = None,
140
        # End marker for thinking tags - splits to get response after this token (if provided).
Baber's avatar
types  
Baber committed
141
        think_end_token: str | None = None,
MaYongQing's avatar
MaYongQing committed
142
        max_lora_rank: int = 16,
Baber Abbasi's avatar
Baber Abbasi committed
143
        **kwargs,
baberabb's avatar
baberabb committed
144
145
    ):
        super().__init__()
146

147
        if not find_spec("vllm"):
148
            raise ModuleNotFoundError(
149
150
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
151
152
            )

Baber Abbasi's avatar
Baber Abbasi committed
153
154
155
        assert max_length is None or max_model_len is None, (
            "Either max_length or max_model_len may be provided, but not both"
        )
Baber Abbasi's avatar
Baber Abbasi committed
156
        kwargs.pop("device", None)
157
        self.think_end_token = think_end_token
158
        self.V1 = os.environ.get("VLLM_USE_V1", "1") != "0"
159
        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
160
        self.tensor_parallel_size = int(tensor_parallel_size)
161
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
162
163
164
165
166
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
167
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
168
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
169
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
170
171
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
172
            "max_model_len": int(self._max_length) if self._max_length else None,
173
            "max_num_seqs": kwargs.get("max_num_seqs", max_batch_size),
baberabb's avatar
baberabb committed
174
175
176
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
Baber's avatar
types  
Baber committed
177
            "enable_lora": bool(lora_local_path),
MaYongQing's avatar
MaYongQing committed
178
            "max_lora_rank": int(max_lora_rank),
baberabb's avatar
baberabb committed
179
        }
Baber Abbasi's avatar
Baber Abbasi committed
180
        self.model_args.update(kwargs)
181
182
183
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
184
            else int(batch_size)
185
        )
186
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
187
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
188
        else:
Baber Abbasi's avatar
Baber Abbasi committed
189
190
191
            eval_logger.warning(
                "You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
            )
192
193
194
195
196
            self.model_args["distributed_executor_backend"] = (
                "ray"
                if not self.V1
                else self.model_args.get("distributed_executor_backend", None)
            )
197
198
199
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

200
        from transformers import AutoConfig
201

202
203
204
        self._config = AutoConfig.from_pretrained(
            pretrained, trust_remote_code=trust_remote_code, revision=revision
        )
baberabb's avatar
nits  
baberabb committed
205
206
207
208
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
209
            revision=tokenizer_revision,
210
            add_bos_token=add_bos_token,
baberabb's avatar
nits  
baberabb committed
211
        )
212
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self._config)
213
        self.chat_template_args = chat_template_args or {}
214
        self.enable_thinking = self.chat_template_args.pop(
215
216
            "enable_thinking", enable_thinking
        )
217
        self.add_bos_token = add_bos_token
218
219
220
        if "gemma" in pretrained.lower():
            self.add_bos_token = True
            eval_logger.info(
221
                "Found 'gemma' in model name, a BOS token will be used as Gemma series models underperform without it."
222
223
            )

224
        if parse_version(version("vllm")) >= parse_version("0.8.3"):
225
226
227
228
229
230
231
            kwargs_resolve_hf_chat_template = {
                "tokenizer": self.tokenizer,
                "chat_template": None,
                "tools": None,
            }

            if parse_version(version("vllm")) >= parse_version("0.9.0"):
232
233
234
235
236
237
238
239
240
241
242
                if self.data_parallel_size <= 1:
                    kwargs_resolve_hf_chat_template["model_config"] = (
                        self.model.llm_engine.model_config
                    )
                else:
                    from vllm.engine.arg_utils import EngineArgs

                    engine_args = EngineArgs(**self.model_args)
                    model_config = engine_args.create_model_config()

                    kwargs_resolve_hf_chat_template["model_config"] = model_config
243
244
245
            else:
                kwargs_resolve_hf_chat_template["trust_remote_code"] = trust_remote_code

246
            self.hf_chat_template = resolve_hf_chat_template(
247
                **kwargs_resolve_hf_chat_template
248
249
250
            )
        else:
            self.hf_chat_template = None
251

252
253
254
255
256
        self.custom_prefix_token_id = prefix_token_id
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
257

baberabb's avatar
baberabb committed
258
259
        self._max_gen_toks = max_gen_toks

bcicc's avatar
bcicc committed
260
        if lora_local_path is not None:
Baber Abbasi's avatar
Baber Abbasi committed
261
262
263
            assert parse_version(version("vllm")) > parse_version("0.3.0"), (
                "lora adapters only compatible with vllm > v0.3.0."
            )
bcicc's avatar
bcicc committed
264
265
266
267
            self.lora_request = LoRARequest("finetuned", 1, lora_local_path)
        else:
            self.lora_request = None

baberabb's avatar
baberabb committed
268
269
270
271
272
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

273
274
275
276
277
278
279
280
281
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

baberabb's avatar
baberabb committed
282
283
284
285
    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
286
287
288
289
290
291
292
293
294
295
296
297
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
298
299
300
301
302

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

Baber Abbasi's avatar
Baber Abbasi committed
303
    def apply_chat_template(
Baber's avatar
types  
Baber committed
304
        self, chat_history: list[dict[str, str]], add_generation_prompt: bool = True
Baber Abbasi's avatar
Baber Abbasi committed
305
    ) -> str:
306
307
308
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
309
310
311
312
313
314
315
316
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
317
                **self.chat_template_args,
318
319
320
321
322
323
324
325
326
327
328
329
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_templated = self.tokenizer.apply_chat_template(
                [msg for msg in chat_history if msg["role"] != "system"],
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
330
                **self.chat_template_args,
331
            )
332

Baber Abbasi's avatar
Baber Abbasi committed
333
334
        return chat_templated

335
336
337
338
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

baberabb's avatar
baberabb committed
339
340
    def tok_encode(
        self,
Baber's avatar
types  
Baber committed
341
        string: str | list[str],
342
343
344
        left_truncate_len: int = None,
        add_special_tokens: bool = False,
        truncation: bool = False,
Baber's avatar
types  
Baber committed
345
    ) -> list[int] | list[list[int]]:
346
347
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
Baber's avatar
types  
Baber committed
348
        encoding: list[list[int]] | list[int] = self.tokenizer(
349
350
351
352
353
            string,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            return_attention_mask=False,
        ).input_ids
baberabb's avatar
baberabb committed
354
355
356

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
357
358
359
360
            if not isinstance(string, str):
                encoding = [enc[-left_truncate_len:] for enc in encoding]
            else:
                encoding = encoding[-left_truncate_len:]
baberabb's avatar
baberabb committed
361
362
363
364
365

        return encoding

    def _model_generate(
        self,
Baber's avatar
types  
Baber committed
366
        requests: list[list[int]] = None,
baberabb's avatar
baberabb committed
367
368
        generate: bool = False,
        max_tokens: int = None,
Baber's avatar
types  
Baber committed
369
        stop: list[str] | None = None,
baberabb's avatar
baberabb committed
370
371
372
        **kwargs,
    ):
        if generate:
373
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
374
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
375
        else:
baberabb's avatar
baberabb committed
376
            sampling_params = SamplingParams(
377
                temperature=0, prompt_logprobs=1, max_tokens=1, detokenize=False
baberabb's avatar
baberabb committed
378
            )
379
        if self.data_parallel_size > 1 and not self.V1:
Baber Abbasi's avatar
Baber Abbasi committed
380
            # vLLM hangs if resources are set in ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
381
382
            # also seems to only work with decorator and not with ray.remote() fn
            # see https://github.com/vllm-project/vllm/issues/973
Baber Abbasi's avatar
Baber Abbasi committed
383
            @ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
384
            def run_inference_one_model(
385
                model_args: dict,
Baber Abbasi's avatar
Baber Abbasi committed
386
                sampling_params: SamplingParams,
Baber's avatar
types  
Baber committed
387
                requests: list[list[int]],
388
                lora_request: LoRARequest,
Baber Abbasi's avatar
Baber Abbasi committed
389
390
391
            ):
                llm = LLM(**model_args)
                return llm.generate(
392
                    [TokensPrompt(prompt_token_ids=request) for request in requests],
393
394
                    sampling_params=sampling_params,
                    lora_request=lora_request,
Baber Abbasi's avatar
Baber Abbasi committed
395
396
                )

397
398
399
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
400
401
402
403
            inputs = (
                (self.model_args, sampling_params, req, self.lora_request)
                for req in requests
            )
Baber Abbasi's avatar
Baber Abbasi committed
404
405
            object_refs = [run_inference_one_model.remote(*x) for x in inputs]
            results = ray.get(object_refs)
406
407
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
408
            # flatten results
409
            return undistribute(results)
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        elif self.data_parallel_size > 1:
            # based on https://github.com/vllm-project/vllm/blob/a04720bc36401d831cb048c3917b9e58173d9c1d/examples/offline_inference/data_parallel.py
            dp_size = self.data_parallel_size
            dp_master_ip = os.environ.get("VLLM_DP_MASTER_IP", "127.0.0.1")
            dp_master_port = os.environ.get("VLLM_DP_MASTER_PORT") or get_open_port()

            requests = (list(x) for x in distribute(self.data_parallel_size, requests))

            procs, resq = [], Queue()
            # We use Process as it is non-daemonic
            try:
                for rank, req in enumerate(requests):
                    proc = Process(
                        target=_vllm_mp_worker,
                        args=(
                            self.model_args.copy(),
                            sampling_params,
                            req,
                            self.lora_request,
                            resq,
                            dp_size,
                            rank,
                            dp_master_port,
                            dp_master_ip,
                        ),
                    )
                    proc.start()
                    procs.append(proc)

                # Collect results
                rank_res = {}
                while len(rank_res) < len(procs):
                    try:
                        rank, result = resq.get(timeout=30)
                        if isinstance(result, dict) and "error" in result:
                            raise RuntimeError(result["error"])
                        rank_res[rank] = result
                    except Empty:
                        dead_procs = [
                            idx
                            for idx, p in enumerate(procs)
                            if not p.is_alive() and idx not in rank_res
                        ]
                        if dead_procs:
                            raise RuntimeError(
                                f"Worker processes {dead_procs} died unexpectedly"
Baber's avatar
types  
Baber committed
456
                            ) from None
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
                        continue

                results = [rank_res[i] for i in range(len(procs))]
                return undistribute(results)

            # cleanup
            finally:
                try:
                    resq.close()
                    resq.join_thread()
                except Exception:
                    eval_logger.debug(
                        "Failed to close vllm DP results queue", exc_info=True
                    )
                for proc in procs:
                    proc.join(timeout=10)
                    if proc.is_alive():
                        proc.terminate()
                        proc.join(timeout=5)
                        if proc.is_alive():
                            proc.kill()
baberabb's avatar
baberabb committed
478

479
480
        else:
            outputs = self.model.generate(
481
                [TokensPrompt(prompt_token_ids=request) for request in requests],
482
                sampling_params=sampling_params,
Baber's avatar
types  
Baber committed
483
                use_tqdm=self.batch_size == "auto",
484
485
486
                lora_request=self.lora_request,
            )
            return outputs
baberabb's avatar
baberabb committed
487

488
    def loglikelihood_rolling(
Baber's avatar
types  
Baber committed
489
490
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[float]:
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        adaptive_batch_size = None
        if self.batch_size == "auto":
            adaptive_batch_size = len(requests)

        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
        ):
Baber's avatar
types  
Baber committed
505
            rolling_token_windows: list[tuple[list[int], list[int]]] = list(
baberabb's avatar
baberabb committed
506
                map(
507
508
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
509
                        token_list=self.tok_encode(string),
510
511
                        prefix_token=self.prefix_token_id,
                        # max_seq_len - (1 for context)
baberabb's avatar
baberabb committed
512
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
513
514
515
516
517
                        context_len=1,
                    ),
                )
            )

518
519
            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            windows = [(None,) + x for x in rolling_token_windows]
baberabb's avatar
baberabb committed
520

521
522
523
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
baberabb's avatar
baberabb committed
524

525
526
527
528
529
530
        all_nlls = []
        batch_size = adaptive_batch_size or int(self.batch_size)
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)
baberabb's avatar
baberabb committed
531

532
533
534
535
536
537
            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
            )
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
554

baberabb's avatar
baberabb committed
555
556
        return loglikelihoods

557
    def generate_until(
Baber's avatar
types  
Baber committed
558
559
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[str]:
560
        res = []
baberabb's avatar
baberabb committed
561
562
563

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
Baber's avatar
types  
Baber committed
564
        context_encoding: list[list[int]] = self.tok_encode(
565
566
            context, add_special_tokens=self.add_bos_token
        )
baberabb's avatar
baberabb committed
567
568
569
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
570
571
572
573
574
575
576
577

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
578
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
579
580
581
582

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
583
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
584
585
586
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
587

588
589
        pbar = tqdm(
            total=len(requests),
590
            disable=(disable_tqdm or (self.rank != 0)),
591
592
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
593
        # for each different set of kwargs, we execute all requests, by batch.
594
        eos = self.tokenizer.decode(self.eot_token_id)
595
596
597
598
599
600
601
602
603
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
604
605
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
606
607
            else:
                raise ValueError(
608
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
baberabb's avatar
baberabb committed
609
                )
Baber's avatar
types  
Baber committed
610
            if "max_gen_toks" in kwargs:
611
612
613
614
615
616
617
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
618
619
620
621
622
623
            all_lengths = [len(x) for x in context_encoding]
            for length in all_lengths:
                if length > max_ctx_len:
                    eval_logger.warning(
                        f"Context length {length} exceeds max length (context + max gen tokens): {max_ctx_len}. Truncating context."
                    )
624
625
626
627
628
629
630
631
632
633
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
634

635
            # cache generations
Baber's avatar
types  
Baber committed
636
            for output, context_ in zip(cont, context):
637
                generated_text: str = output.outputs[0].text
638
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
639
640
641
                generated_text = postprocess_generated_text(
                    generated_text, until, self.think_end_token
                )
642
643
                res.append(generated_text)
                self.cache_hook.add_partial(
Baber's avatar
types  
Baber committed
644
                    "generate_until", (context_, gen_kwargs), generated_text
645
646
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
647
648

        pbar.close()
649
650
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
651
652

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
653
        self,
Baber's avatar
types  
Baber committed
654
        requests: list[tuple[tuple[str, str], list[int], list[int]]],
baberabb's avatar
baberabb committed
655
        disable_tqdm: bool = False,
Baber's avatar
types  
Baber committed
656
    ) -> list[tuple[float, bool]]:
baberabb's avatar
baberabb committed
657
658
659
660
661
662
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

663
664
665
666
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
667
        )
668

669
670
671
672
673
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
674
        for chunk in chunks:
675
            inputs = []
baberabb's avatar
baberabb committed
676
            ctxlens = []
Baber's avatar
types  
Baber committed
677
            for _cache_key, context_enc, continuation_enc in chunk:
678
679
                if (
                    full_length := len(context_enc + continuation_enc)
680
                ) > self.max_length:
681
682
683
                    eval_logger.warning(
                        f"Context length {full_length} exceeds max length ({self.max_length}). Truncating context."
                    )
baberabb's avatar
baberabb committed
684
685
686
687
688
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

689
                inputs.append(inp)
baberabb's avatar
baberabb committed
690
691
                ctxlens.append(ctxlen)

692
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
693

694
695
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
696
697
            ):
                answer = self._parse_logprobs(
698
699
700
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
701
702
703
704
705
                )

                res.append(answer)

                if cache_key is not None:
706
707
708
                    # special case: loglikelihood_rolling produces a number of loglikelihood requests
                    # all with cache key None. instead do add_partial on the per-example level
                    # in the loglikelihood_rolling() function for those.
baberabb's avatar
baberabb committed
709
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
710
                pbar.update(1)
baberabb's avatar
baberabb committed
711
712
713
714
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
Baber's avatar
types  
Baber committed
715
    def _parse_logprobs(tokens: list, outputs, ctxlen: int) -> tuple[float, bool]:
baberabb's avatar
baberabb committed
716
717
718
        """Process logprobs and tokens.

        :param tokens: list
719
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
720
        :param outputs: RequestOutput
721
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
722
723
724
725
726
727
728
729
730
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

731
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
732
733
        continuation_logprobs_dicts = outputs.prompt_logprobs

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

baberabb's avatar
baberabb committed
754
        # Calculate continuation_logprobs
755
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
756
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
757
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
758
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
759
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
760
761
762
763
764
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
765
766
767
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
768
769
770
771
772
773
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
774
775

        return continuation_logprobs, is_greedy
776
777
778
779

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
780
        kwargs["temperature"] = kwargs.get("temperature", 0.0)
781
        do_sample = kwargs.pop("do_sample", None)
782
783
784
785
        if do_sample is False and "temperature" not in kwargs:
            eval_logger.debug(
                "Got `do_sample=False` and no temperature value, setting VLLM temperature to 0.0 ..."
            )
786
787
788
789
790
791
792
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs