huggingface.py 40.1 KB
Newer Older
1
import os
baberabb's avatar
baberabb committed
2
from packaging import version
3
4
import torch
import transformers
5
6
7
8
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
9
from peft import __version__ as PEFT_VERSION, PeftModel
10
11

import copy
12
from collections import defaultdict
13
from tqdm import tqdm
14
from pathlib import Path
15
16
17
18

import torch.nn.functional as F

from lm_eval import utils
baberabb's avatar
baberabb committed
19
from lm_eval.api.instance import Instance
20
21
22
23
24
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

25
from accelerate import Accelerator, find_executable_batch_size, DistributedType
baberabb's avatar
baberabb committed
26
from typing import List, Optional, Union, Tuple
27

28
eval_logger = utils.eval_logger
29

lintangsutawika's avatar
lintangsutawika committed
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
54
55


56
@register_model("hf-auto", "hf", "huggingface")
57
class HFLM(LM):
58
59
60
61
62
63
64
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

65
    AUTO_MODEL_CLASS = None
66
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
67

68
69
    def __init__(
        self,
70
71
72
73
        pretrained: Optional[str] = "gpt2",
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
        tokenizer: Optional[str] = None,
lintangsutawika's avatar
lintangsutawika committed
74
        truncation: Optional[bool] = False,
75
76
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
77
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
78
79
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
80
81
        low_cpu_mem_usage: Optional[bool] = True,
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
82
        use_fast_tokenizer: Optional[bool] = True,
lintangsutawika's avatar
lintangsutawika committed
83
        cache_dir: Optional[Union[str, os.PathLike]] = None,
84
        # arguments used for splitting a model across GPUs naively.
85
86
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
87
88
89
90
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
91
92
93
94
95
96
97
98
        # PEFT and quantization options
        peft: Optional[str] = None,
        load_in_8bit: Optional[bool] = False,
        load_in_4bit: Optional[bool] = False,
        bnb_4bit_quant_type: Optional[str] = None,
        bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
        gptq: Optional[Union[bool, str]] = False,
        gptq_use_triton: Optional[bool] = False,
Ethan Smith's avatar
Ethan Smith committed
99
    ) -> None:
100
101
102
103
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
Benjamin Fattori's avatar
Benjamin Fattori committed
104
        assert isinstance(batch_size, (int, str))
105
106

        gpus = torch.cuda.device_count()
107
        accelerator = Accelerator()
haileyschoelkopf's avatar
haileyschoelkopf committed
108

109
        if not (parallelize or accelerator.num_processes > 1):
110
            # use user-passed device
111
            device_list = set(
112
                ["cuda", "cpu"]
113
                + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
114
                + ["mps", "mps:0"]
115
            )
116
            if device:
117
                if device not in device_list:
118
119
120
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
baberabb's avatar
baberabb committed
121
122
123
124
125
                if device in ("mps", "mps:0") and version.parse(
                    torch.__version__
                ) < version.parse("2.1"):
                    raise RuntimeError(
                        f"mps requires torch >= 2.1. You have {torch.__version__}"
126
                    )
127
128
129
130
131
132
133
134
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
135
        else:
136
137
138
139
            if device != "cuda":
                eval_logger.info(
                    f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                )
140
            # TODO: include in warning that `load_in_8bit` etc. affect this too
141
142
143
            self._device = device

        model_kwargs = {}
144
        if parallelize:
145
146
147
148
149
150
            model_kwargs = _get_accelerate_args(
                device_map_option,
                max_memory_per_gpu,
                max_cpu_memory,
                offload_folder,
            )
151
152
153
154
155
156
157

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
158
            trust_remote_code=trust_remote_code,
159
160
        )

161
162
        if (
            getattr(self._config, "model_type")
163
164
            in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
        ):
165
166
167
168
169
170
171
            # first check if model type is listed under seq2seq models, since some
            # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
            # these special cases should be treated as seq2seq models.
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
        elif getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
        else:
172
173
174
175
176
177
178
179
            if not trust_remote_code:
                eval_logger.warning(
                    "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                )
            # if model type is neither in HF transformers causal or seq2seq model registries
            # then we default to AutoModelForCausalLM
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
180

haileyschoelkopf's avatar
haileyschoelkopf committed
181
182
183
184
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        if not gptq:
            if load_in_4bit:
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                model_kwargs["load_in_4bit"] = load_in_4bit
                if load_in_4bit:
                    if bnb_4bit_quant_type:
                        model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
                    if bnb_4bit_compute_dtype:
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            bnb_4bit_compute_dtype
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                load_in_8bit=load_in_8bit,
                **model_kwargs,
            )
        else:
gk's avatar
gk committed
210
211
212
213
214
215
216
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                model_basename=None if gptq is True else Path(gptq).stem,
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
                use_triton=gptq_use_triton,
                warmup_triton=gptq_use_triton,
                **model_kwargs,
            )

        if peft:
            if load_in_4bit:
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

236
        # forever after, access self._model through self.model property
237
        self.model.eval()
238
239
240
        self.model.tie_weights()
        if gpus <= 1 and not parallelize:
            # place model onto device, if not using HF Accelerate in any form
241
242
243
244
245
246
            try:
                self.model.to(self.device)
            except ValueError:
                eval_logger.info(
                    "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
247

248
249
250
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
251
            trust_remote_code=trust_remote_code,
haileyschoelkopf's avatar
haileyschoelkopf committed
252
            use_fast=use_fast_tokenizer,
253
254
        )

lintangsutawika's avatar
lintangsutawika committed
255
256
        self.truncation = truncation

257
        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
258
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
259

260
261
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
262
263
264
265
266
267
268
269
270
271
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
272
273
274
275
276
277
278
279
280
281
282

        # multigpu data-parallel support when launched with accelerate
        if gpus > 1:
            if parallelize:
                if accelerator.num_processes > 1:
                    raise RuntimeError(
                        "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                    )
                else:
                    pass
            elif gpus > accelerator.num_processes:
283
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
299
300
301
302
303
304
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.info(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                    )
305
            else:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
306
                assert accelerator.distributed_type in [
lintangsutawika's avatar
lintangsutawika committed
307
308
                    DistributedType.FSDP,
                    DistributedType.MULTI_GPU,
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
309
                ], "Unsupported distributed type provided. Only DDP and FSDP are supported."
310
                if accelerator.distributed_type == DistributedType.FSDP:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
311
                    self._model = accelerator.prepare(self.model)
312
313
                else:
                    self._model = accelerator.prepare_model(
lintangsutawika's avatar
lintangsutawika committed
314
                        self.model, evaluation_mode=True
315
                    )
316
317
318
319
320
321
322
323
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
324

325
326
327
328
329
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

330
331
332
333
334
335
336
337
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

338
339
340
341
342
343
344
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
345
346
347
348
349
350
351
352
353
354
355
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
356

357
    @property
Ethan Smith's avatar
Ethan Smith committed
358
    def max_gen_toks(self) -> int:
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

Ethan Smith's avatar
Ethan Smith committed
377
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
378
379
380
381
382
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
383
384
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
385
386
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
387

Benjamin Fattori's avatar
Benjamin Fattori committed
388
389
390
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
391
392
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
393
394
395
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
396
397
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
398
399
400
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
401
402
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
403
404
405
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
406
            for _ in range(5):
407
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
408
409
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
410
411
412
413
            return batch_size

        batch_size = forward_batch()

414
415
416
417
418
419
420
421
422
423
424
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
425
426
        return batch_size

baberabb's avatar
baberabb committed
427
428
429
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
430
        """ """
431
432
433
434
435
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                add_special_tokens = False
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                add_special_tokens = True
436
437

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
438

439
440
441
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
442

443
444
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
445
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
446
447
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
448
        padding_side: str = "left",
449
450
        left_truncate_len: int = None,
        truncation: bool = False,
baberabb's avatar
baberabb committed
451
    ) -> Tuple[List[int], List[int]]:
haileyschoelkopf's avatar
haileyschoelkopf committed
452
453
454
455
456
457
458
459
460
461
462
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
463
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
464
465
466
467
468
469
470
471
472
473
474
475
476
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

477
478
479
480
481
482
483
484
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
485
        :param inps: torch.Tensor
486
487
488
489
490
491
492
493
494
495
496
497
498
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
499
500
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
501
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
502
503
504
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
505
506
507
508
509
510
511
512
513
514
515
516
517
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
518
        return self.model.generate(
519
            input_ids=context,
520
521
522
523
524
525
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
526
527
528

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
529
530
531
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
532
533
534
535
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
536
537
538
539
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
540
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
541
542
            logits = logits[:contlen]

543
544
        return logits

baberabb's avatar
baberabb committed
545
546
547
    def _encode_pair(
        self, context: str, continuation: str
    ) -> Tuple[List[int], List[int]]:
548
549
550
551
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
552
553
554
555
556
557

        whole_enc = self.tok_encode(context + continuation, add_special_tokens=False)
        context_enc = self.tok_encode(context, add_special_tokens=False)

        # whole_enc = self.tok_encode(context + continuation)
        # context_enc = self.tok_encode(context, add_special_tokens=False)
558
559
560
561
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

baberabb's avatar
baberabb committed
562
    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
563
564
565
566
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
567
568
569
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
570
            else:
571
                context_enc, continuation_enc = self._encode_pair(context, continuation)
572
573
574
575
576

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

baberabb's avatar
baberabb committed
577
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
578
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
579
580
581
582
583
584
585
586
587

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

588
589
590
591
592
593
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
594
                        prefix_token=self.eot_token_id,
595
596
597
598
599
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
600
601

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
617
618
619
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
620
621
622
623
624
625
626
627
628
629
630
631
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
632

633
634
635
636
637
638
639
640
641
642
643
644
645
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
646
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
647
648
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
649

Ethan Smith's avatar
Ethan Smith committed
650
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
651
652
653
654
655
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
671
672
673
674

        n_reordered_requests = len(re_ord.get_reordered())
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
lintangsutawika's avatar
lintangsutawika committed
675

676
677
        chunks = utils.chunks(
            re_ord.get_reordered(),
678
679
680
681
682
683
684
685
686
687
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=self._batch_scheduler
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
            else None,
688
689
        )

haileyschoelkopf's avatar
haileyschoelkopf committed
690
        pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
haileyschoelkopf's avatar
haileyschoelkopf committed
691
        for chunk in chunks:
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
711
                # how this all works (illustrated on a causal decoder-only setup):
712
713
714
715
716
717
718
719
720
721
722
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
723
724
                        device=self.device,
                    )
725
726
727
728
729
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
730
                        device=self.device,
731
                    )
732
                    (inplen,) = inp.shape
733
734
735
736

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

737
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
738
                        (continuation_enc)[-self.max_length :],
739
740
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
741
                        dtype=torch.long,
742
743
                        device=self.device,
                    )
744
745
                    (contlen,) = cont.shape

746
747
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
748
749
750
751
752
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
753

haileyschoelkopf's avatar
haileyschoelkopf committed
754
755
756
757
758
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
759
760
761
762

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
763

764
765
766
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
767
768
769
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
770
771
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
772
773
774
775
776
777
778
779
780
781
782
783
784
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
785
786
787

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
788
            )  # [batch, padding_length (inp or cont), vocab]
789
790
791
792
793
794

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
795
                # take only logits in the continuation
796
                # (discard context toks if decoder-only ; discard right-padding)
797
798
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
799
                ctx_len = (
800
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
801
802
803
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
804
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
805
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
806
807
808

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
809
810
811
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
                ).unsqueeze(
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
827
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)
haileyschoelkopf's avatar
haileyschoelkopf committed
828
829
830
                pbar.update(1)

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
831

832
833
        return re_ord.get_original(res)

baberabb's avatar
baberabb committed
834
    def generate_until(self, requests: List[Instance]) -> List[str]:
835
836
        res = defaultdict(list)
        re_ords = {}
837
838

        def _collate(x):
839
840
841
842
843
844
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
845
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
846
            return -len(toks), x[0]
847

848
849
850
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
851
852
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
853
            # within each set of reqs for given kwargs, we reorder by token length, descending.
854
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
855

856
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
857
858
859
860
861
862
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
863
        # for each different set of kwargs, we execute all requests, by batch.
864
        for key, re_ord in re_ords.items():
865
866
            chunks = utils.chunks(
                re_ord.get_reordered(),
867
868
869
870
871
872
873
874
                n=self.batch_size
                if self.batch_size != "auto"
                else adaptive_batch_size
                if adaptive_batch_size is not None
                else 0,
                fn=self._batch_scheduler
                if self.batch_size == "auto" and not adaptive_batch_size
                else None,
875
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
876
            for chunk in chunks:
877
                contexts, all_gen_kwargs = zip(*chunk)
878
879
880
881
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
882
883
884
885
886
887
888
889
890
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
891
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
892
893
894
                            )
                else:
                    raise ValueError(
895
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
896
897
898
899
900
901
902
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
903

904
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
905
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
906
907
908
909
910
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
911

912
                # encode, pad, and truncate contexts for this batch
913
                context_enc, attn_masks = self.tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
914
915
916
                    contexts,
                    left_truncate_len=max_ctx_len,
                    truncation=self.truncation,
917
918
919
920
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

921
                if "max_length" not in kwargs:
Lintang Sutawika's avatar
Lintang Sutawika committed
922
                    kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
923

924
                # perform batched generation
925
926
927
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
928
                    stop=until,
929
930
                    **kwargs,
                )
931

932
933
934
935
936
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
937

938
                    s = self.tok_decode(cont_toks)
939

940
941
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
942
943
944
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
945
                            s = s.split(term)[0]
946

947
                    res[key].append(s)
948

949
                    self.cache_hook.add_partial(
950
                        "generate_until", (context, gen_kwargs), s
951
952
                    )
                    pbar.update(1)
953
            # reorder this group of results back to original unsorted form
954
            res[key] = re_ord.get_original(res[key])
955

956
        pbar.close()
957

958
        return grouper.get_original(res)