huggingface.py 39.9 KB
Newer Older
1
2
import os

3
4
import torch
import transformers
5
6
7
8
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
9
from peft import __version__ as PEFT_VERSION, PeftModel
10
11

import copy
12
from collections import defaultdict
13
from tqdm import tqdm
14
from pathlib import Path
15
16
17
18
19
20
21
22
23

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

24
from accelerate import Accelerator, find_executable_batch_size, DistributedType
25
from typing import List, Optional, Union
26

27
eval_logger = utils.eval_logger
28

lintangsutawika's avatar
lintangsutawika committed
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu
            for device_idx in range(torch.cuda.device_count())
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args
53
54


55
@register_model("hf-auto", "hf", "huggingface")
56
class HFLM(LM):
57
58
59
60
61
62
63
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

64
    AUTO_MODEL_CLASS = None
65
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
66

67
68
    def __init__(
        self,
69
70
71
72
        pretrained: Optional[str] = "gpt2",
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
        tokenizer: Optional[str] = None,
lintangsutawika's avatar
lintangsutawika committed
73
        truncation: Optional[bool] = False,
74
75
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
76
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
77
78
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
79
80
        low_cpu_mem_usage: Optional[bool] = True,
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
81
        use_fast_tokenizer: Optional[bool] = True,
lintangsutawika's avatar
lintangsutawika committed
82
        cache_dir: Optional[Union[str, os.PathLike]] = None,
83
        # arguments used for splitting a model across GPUs naively.
84
85
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
86
87
88
89
        device_map_option: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
90
91
92
93
94
95
96
97
        # PEFT and quantization options
        peft: Optional[str] = None,
        load_in_8bit: Optional[bool] = False,
        load_in_4bit: Optional[bool] = False,
        bnb_4bit_quant_type: Optional[str] = None,
        bnb_4bit_compute_dtype: Optional[Union[str, torch.dtype]] = None,
        gptq: Optional[Union[bool, str]] = False,
        gptq_use_triton: Optional[bool] = False,
Ethan Smith's avatar
Ethan Smith committed
98
    ) -> None:
99
100
101
102
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
Benjamin Fattori's avatar
Benjamin Fattori committed
103
        assert isinstance(batch_size, (int, str))
104
105

        gpus = torch.cuda.device_count()
106
        accelerator = Accelerator()
haileyschoelkopf's avatar
haileyschoelkopf committed
107

108
        if not (parallelize or accelerator.num_processes > 1):
109
            # use user-passed device
110
            device_list = set(
111
                ["cuda", "cpu"]
112
                + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
113
                + ["mps", "mps:0"]
114
            )
115
            if device:
116
                if device not in device_list:
117
118
119
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
120
                if device in ("mps", "mps:0") and "dev" not in torch.__version__:
121
                    eval_logger.info(
122
123
124
                        "MPS: Setting dtype to float32. To use float16 with MPS, please install a nightly build of "
                        "PyTorch: pip3 install --pre torch torchvision torchaudio --index-url "
                        "https://download.pytorch.org/whl/nightly/cpu"
125
                    )
126
127
128
129
130
131
132
133
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
134
        else:
135
136
137
138
            if device != "cuda":
                eval_logger.info(
                    f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                )
139
            # TODO: include in warning that `load_in_8bit` etc. affect this too
140
141
142
            self._device = device

        model_kwargs = {}
143
        if parallelize:
144
145
146
147
148
149
            model_kwargs = _get_accelerate_args(
                device_map_option,
                max_memory_per_gpu,
                max_cpu_memory,
                offload_folder,
            )
150
151
152
153
154
155
156

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
157
            trust_remote_code=trust_remote_code,
158
159
        )

160
161
        if (
            getattr(self._config, "model_type")
162
163
            in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
        ):
164
165
166
167
168
169
170
            # first check if model type is listed under seq2seq models, since some
            # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
            # these special cases should be treated as seq2seq models.
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
        elif getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
        else:
171
172
173
174
175
176
177
178
            if not trust_remote_code:
                eval_logger.warning(
                    "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                )
            # if model type is neither in HF transformers causal or seq2seq model registries
            # then we default to AutoModelForCausalLM
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
179

haileyschoelkopf's avatar
haileyschoelkopf committed
180
181
182
183
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        if not gptq:
            if load_in_4bit:
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                model_kwargs["load_in_4bit"] = load_in_4bit
                if load_in_4bit:
                    if bnb_4bit_quant_type:
                        model_kwargs["bnb_4bit_quant_type"] = bnb_4bit_quant_type
                    if bnb_4bit_compute_dtype:
                        model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype(
                            bnb_4bit_compute_dtype
                        )
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=utils.get_dtype(dtype),
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                load_in_8bit=load_in_8bit,
                **model_kwargs,
            )
        else:
gk's avatar
gk committed
209
210
211
212
213
214
215
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                model_basename=None if gptq is True else Path(gptq).stem,
                low_cpu_mem_usage=low_cpu_mem_usage,
                trust_remote_code=trust_remote_code,
                use_safetensors=True if gptq is True else gptq.endswith(".safetensors"),
                use_triton=gptq_use_triton,
                warmup_triton=gptq_use_triton,
                **model_kwargs,
            )

        if peft:
            if load_in_4bit:
                assert PEFT_VERSION >= "0.4.0", "load_in_4bit requires peft >= 0.4.0"
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )

235
        # forever after, access self._model through self.model property
236
        self.model.eval()
237
238
239
        self.model.tie_weights()
        if gpus <= 1 and not parallelize:
            # place model onto device, if not using HF Accelerate in any form
240
241
242
243
244
245
            try:
                self.model.to(self.device)
            except ValueError:
                eval_logger.info(
                    "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
246

247
248
249
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
250
            trust_remote_code=trust_remote_code,
haileyschoelkopf's avatar
haileyschoelkopf committed
251
            use_fast=use_fast_tokenizer,
252
253
        )

lintangsutawika's avatar
lintangsutawika committed
254
255
        self.truncation = truncation

256
        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
257
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
258

259
260
        self._max_length = max_length

Benjamin Fattori's avatar
Benjamin Fattori committed
261
262
263
264
265
266
267
268
269
270
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
271
272
273
274
275
276
277
278
279
280
281

        # multigpu data-parallel support when launched with accelerate
        if gpus > 1:
            if parallelize:
                if accelerator.num_processes > 1:
                    raise RuntimeError(
                        "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                    )
                else:
                    pass
            elif gpus > accelerator.num_processes:
282
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
298
299
300
301
302
303
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.info(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
                    )
304
            else:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
305
                assert accelerator.distributed_type in [
lintangsutawika's avatar
lintangsutawika committed
306
307
                    DistributedType.FSDP,
                    DistributedType.MULTI_GPU,
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
308
                ], "Unsupported distributed type provided. Only DDP and FSDP are supported."
309
                if accelerator.distributed_type == DistributedType.FSDP:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
310
                    self._model = accelerator.prepare(self.model)
311
312
                else:
                    self._model = accelerator.prepare_model(
lintangsutawika's avatar
lintangsutawika committed
313
                        self.model, evaluation_mode=True
314
                    )
315
316
317
318
319
320
321
322
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
323

324
325
326
327
328
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

329
330
331
332
333
334
335
336
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

337
338
339
340
341
342
343
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
344
345
346
347
348
349
350
351
352
353
354
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
355

356
    @property
Ethan Smith's avatar
Ethan Smith committed
357
    def max_gen_toks(self) -> int:
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

Ethan Smith's avatar
Ethan Smith committed
376
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
377
378
379
380
381
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
382
383
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
384
385
        else:
            max_length = self.max_length
lintangsutawika's avatar
lintangsutawika committed
386

Benjamin Fattori's avatar
Benjamin Fattori committed
387
388
389
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
390
391
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
392
393
394
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
395
396
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
397
398
399
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
400
401
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
402
403
404
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
405
            for _ in range(5):
406
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
lintangsutawika's avatar
lintangsutawika committed
407
408
                out = out  # Identity process so that it passes pre-commit

Benjamin Fattori's avatar
Benjamin Fattori committed
409
410
411
412
            return batch_size

        batch_size = forward_batch()

413
414
415
416
417
418
419
420
421
422
423
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
            utils.clear_torch_cache()
            return batch_size

        utils.clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
424
425
        return batch_size

426
    def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None):
haileyschoelkopf's avatar
haileyschoelkopf committed
427
        """ """
428
429
430
431
432
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                add_special_tokens = False
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                add_special_tokens = True
433
434

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
435

436
437
438
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
439

440
441
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
442
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
443
444
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
445
        padding_side: str = "left",
446
447
        left_truncate_len: int = None,
        truncation: bool = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
448
449
450
451
452
453
454
455
456
457
458
459
    ):
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
460
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
461
462
463
464
465
466
467
468
469
470
471
472
473
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

474
475
476
477
478
479
480
481
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
482
        :param inps: torch.Tensor
483
484
485
486
487
488
489
490
491
492
493
494
495
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
496
497
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
498
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
499
500
501
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
502
503
504
505
506
507
508
509
510
511
512
513
514
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
515
        return self.model.generate(
516
            input_ids=context,
517
518
519
520
521
522
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
523
524
525

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
526
527
528
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
529
530
531
532
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
535
536
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
537
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
538
539
            logits = logits[:contlen]

540
541
        return logits

542
543
544
545
546
    def _encode_pair(self, context, continuation):
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
547
548
549
550
551
552

        whole_enc = self.tok_encode(context + continuation, add_special_tokens=False)
        context_enc = self.tok_encode(context, add_special_tokens=False)

        # whole_enc = self.tok_encode(context + continuation)
        # context_enc = self.tok_encode(context, add_special_tokens=False)
553
554
555
556
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

557
558
559
560
561
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
562
563
564
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
565
            else:
566
                context_enc, continuation_enc = self._encode_pair(context, continuation)
567
568
569
570
571
572
573

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
574
575
576
577
578
579
580
581
582

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

583
584
585
586
587
588
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
589
                        prefix_token=self.eot_token_id,
590
591
592
593
594
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
595
596

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
lintangsutawika's avatar
lintangsutawika committed
612
613
614
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
615
616
617
618
619
620
621
622
623
624
625
626
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
627

628
629
630
631
632
633
634
635
636
637
638
639
640
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
641
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
642
643
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
644

Ethan Smith's avatar
Ethan Smith committed
645
646
647
    def _loglikelihood_tokens(
        self, requests, disable_tqdm: bool = False, override_bs=None
    ):
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)
Benjamin Fattori's avatar
Benjamin Fattori committed
663
664
665
666

        n_reordered_requests = len(re_ord.get_reordered())
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
lintangsutawika's avatar
lintangsutawika committed
667

668
669
        chunks = utils.chunks(
            re_ord.get_reordered(),
670
671
672
673
674
675
676
677
678
679
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=self._batch_scheduler
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
            else None,
680
681
        )

haileyschoelkopf's avatar
haileyschoelkopf committed
682
        pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
haileyschoelkopf's avatar
haileyschoelkopf committed
683
        for chunk in chunks:
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
703
                # how this all works (illustrated on a causal decoder-only setup):
704
705
706
707
708
709
710
711
712
713
714
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
715
716
                        device=self.device,
                    )
717
718
719
720
721
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
722
                        device=self.device,
723
                    )
724
                    (inplen,) = inp.shape
725
726
727
728

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

729
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
730
                        (continuation_enc)[-self.max_length :],
731
732
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
733
                        dtype=torch.long,
734
735
                        device=self.device,
                    )
736
737
                    (contlen,) = cont.shape

738
739
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
740
741
742
743
744
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
745

haileyschoelkopf's avatar
haileyschoelkopf committed
746
747
748
749
750
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
751
752
753
754

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
755

756
757
758
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
759
760
761
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
762
763
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
764
765
766
767
768
769
770
771
772
773
774
775
776
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
777
778
779

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
780
            )  # [batch, padding_length (inp or cont), vocab]
781
782
783
784
785
786

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
787
                # take only logits in the continuation
788
                # (discard context toks if decoder-only ; discard right-padding)
789
790
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
791
                ctx_len = (
792
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
793
794
795
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
796
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
797
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
798
799
800

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
801
802
803
                cont_toks = torch.tensor(
                    cont_toks, dtype=torch.long, device=self.device
                ).unsqueeze(
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
819
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)
haileyschoelkopf's avatar
haileyschoelkopf committed
820
821
822
                pbar.update(1)

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
823

824
825
        return re_ord.get_original(res)

826
    def generate_until(self, requests):
827
828
        res = defaultdict(list)
        re_ords = {}
829
830

        def _collate(x):
831
832
833
834
835
836
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
837
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
838
            return -len(toks), x[0]
839

840
841
842
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
843
844
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
845
            # within each set of reqs for given kwargs, we reorder by token length, descending.
846
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
847

848
        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
849
850
851
852
853
854
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
855
        # for each different set of kwargs, we execute all requests, by batch.
856
        for key, re_ord in re_ords.items():
857
858
            chunks = utils.chunks(
                re_ord.get_reordered(),
859
860
861
862
863
864
865
866
                n=self.batch_size
                if self.batch_size != "auto"
                else adaptive_batch_size
                if adaptive_batch_size is not None
                else 0,
                fn=self._batch_scheduler
                if self.batch_size == "auto" and not adaptive_batch_size
                else None,
867
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
868
            for chunk in chunks:
869
                contexts, all_gen_kwargs = zip(*chunk)
870
871
872
873
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
874
875
876
877
878
879
880
881
882
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
883
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
884
885
886
                            )
                else:
                    raise ValueError(
887
                        f"Expected `kwargs` to be of type `dict` but got {kwargs}"
888
889
890
891
892
893
894
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
895

896
                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
897
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
898
899
900
901
902
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
903

904
                # encode, pad, and truncate contexts for this batch
905
                context_enc, attn_masks = self.tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
906
907
908
                    contexts,
                    left_truncate_len=max_ctx_len,
                    truncation=self.truncation,
909
910
911
912
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

913
                if "max_length" not in kwargs:
Lintang Sutawika's avatar
Lintang Sutawika committed
914
                    kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
915

916
                # perform batched generation
917
918
919
                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
920
                    stop=until,
921
922
                    **kwargs,
                )
923

924
925
926
927
928
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
929

930
                    s = self.tok_decode(cont_toks)
931

932
933
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
934
935
936
                        if len(term) > 0:
                            # ignore '' separator,
                            # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
937
                            s = s.split(term)[0]
938

939
                    res[key].append(s)
940

941
                    self.cache_hook.add_partial(
942
                        "generate_until", (context, gen_kwargs), s
943
944
                    )
                    pbar.update(1)
945
            # reorder this group of results back to original unsorted form
946
            res[key] = re_ord.get_original(res[key])
947

948
        pbar.close()
949

950
        return grouper.get_original(res)