huggingface.py 62.2 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
6

7
import torch
8
import torch.nn.functional as F
9
import transformers
Jeevan's avatar
Jeevan committed
10
11
12
13
14
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
15
from accelerate.utils import get_max_memory
16
from huggingface_hub import HfApi
17
18
19
20
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
21
22
23
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
lintang's avatar
lintang committed
24
    MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
25
)
26
27

from lm_eval import utils
baberabb's avatar
baberabb committed
28
from lm_eval.api.instance import Instance
29
from lm_eval.api.model import TemplateLM
30
from lm_eval.api.registry import register_model
31
32
33
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
34
    configure_pad_token,
35
36
37
38
    get_dtype,
    pad_and_concat,
    stop_sequences_criteria,
)
39

40

lintang's avatar
lintang committed
41
42
43
44
import llava
import cambrian
import palo

45
eval_logger = utils.eval_logger
46

lintangsutawika's avatar
lintangsutawika committed
47

48
@register_model("hf-auto", "hf", "huggingface")
49
class HFLM(TemplateLM):
50
51
52
53
54
55
56
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

57
    AUTO_MODEL_CLASS = None
58
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
59

60
61
    def __init__(
        self,
62
        pretrained: Union[str, transformers.PreTrainedModel],
Baber Abbasi's avatar
Baber Abbasi committed
63
64
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
65
66
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
67
68
69
70
71
72
73
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
74
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
75
        logits_cache: bool = True,
76
77
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
78
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
79
80
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
81
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
82
        use_fast_tokenizer: Optional[bool] = True,
83
        add_bos_token: Optional[bool] = False,
84
        prefix_token_id: Optional[int] = None,
85
        # arguments used for splitting a model across GPUs naively.
86
87
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
88
89
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
90
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
91
        # PEFT, delta weights and quantization options
92
        peft: Optional[str] = None,
93
        delta: Optional[str] = None,
94
95
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
96
    ) -> None:
97
98
        super().__init__()

99
100
101
102
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
103
            )
104
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
105
106
107
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
108
            gpus = 0
109

110
        else:
111
112
113
114
115
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
116
117
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
118
119
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
120

121
122
123
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
124
            # using one process with no model parallelism
125
126
127
128
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
129
                    + [f"cuda:{i}" for i in range(gpus)]
130
                    + ["mps", "mps:0"]
131
                    + [f"npu:{i}" for i in range(gpus)]
132
                )
133
                if device and device in device_list:
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
150
            else:  # Parallelism managed by accelerate
151
152
153
154
155
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
156
157
158
159
160
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
161

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
162
            revision = str(revision)  # cast to string if not already one
163
164
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
165

166
            self._get_config(
167
168
169
170
171
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

172
173
174
175
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
176

177
178
179
180
181
182
183
184
185
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

186
187
188
189
190
191
192
193
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
194
                gpus=gpus,
195
196
197
198
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
199
                delta=delta,
200
201
                autogptq=autogptq,
                **kwargs,
202
203
            )

204
        # access self._model through self.model property outside this method
205
206
207
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
208

lintangsutawika's avatar
lintangsutawika committed
209
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
210
        self.logits_cache = logits_cache
211
        self.vocab_size = self.tokenizer.vocab_size
212
        # select (or create) a pad token to use
213
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
214

215
        self.add_bos_token = add_bos_token
216
        if "gemma" in getattr(self.config, "model_type", ""):
217
            self.add_bos_token = True
218
            eval_logger.info(
219
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
220
221
            )

222
        self._max_length = max_length
223
224
225
226
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
227
228
229
230
231
232
233
234
235
236
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
237

238
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
239
240
241
242
243
244
245
246
247
248
249
250
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
251
252
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
253
254
255
256
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
257
                        )
Nathan Habib's avatar
Nathan Habib committed
258
                    elif gpus > accelerator.num_processes:
259
260
261
262
263
264
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
265
266
267
268
269
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

270
                    self._device = torch.device(f"{accelerator.device}")
271
                    self.accelerator = accelerator
272

273
274
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
275
276
277
278
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
279
280
281
282
283
284
285
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
286

287
        self.custom_prefix_token_id = prefix_token_id
288
289
290
291
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
292

Nathan Habib's avatar
Nathan Habib committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    def _get_accelerate_args(
        self,
        parallelize: bool = None,
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
342
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
343
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
344
                else:
Nathan Habib's avatar
Nathan Habib committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
            args["device_map"] = "auto"
            eval_logger.info(
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to 'auto'"
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

381
382
383
384
385
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

386
387
388
389
390
391
392
393
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

394
395
396
397
398
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

399
400
401
402
403
404
405
406
407
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

408
409
    @property
    def max_length(self):
410
411
412
413
414
415
416
417
418
419
420
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
421

422
    @property
Ethan Smith's avatar
Ethan Smith committed
423
    def max_gen_toks(self) -> int:
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
442
443
444
445
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
        """
        Get the appropriate chat template for the model based on configuration and input.
        This method determines, and returns the correct chat template, ensuring reproducibility.

        The template selection logic is adapted from the Transformers library's `apply_chat_template`
        method in the Tokenizer class. The original implementation can be found at:
        https://github.com/huggingface/transformers/blob/fc35907f95459d7a6c5281dfadd680b6f7b620e3/src/transformers/tokenization_utils_base.py#L1687

        This method ensures that the right template is chosen based on the following:
        1. If the model's tokenizer has multiple templates:
            a. Use the specified template if it exists in the dictionary.
            b. Use the default template from the list if no specific template is provided.
            c. Raise an error if no default template exists and no specific template is provided.
        2. If the model's tokenizer has a single template or no template:
            a. Use the tokenizer's chat template if available.
            b. Fall back to the default chat template if no tokenizer chat template exists.

        Args:
            chat_template (Union[bool, str]): Specifies the chat template to use.
                - If False or None, no template is applied.
                - If True, the default or only available template is used.
                - If a string, the template with the matching name is used.

        Returns:
            Optional[str]: The selected chat template, or None if no template is applied.
        """
        if chat_template is False or chat_template is None:
            eval_logger.warning(
                "model.chat_template was called with the chat_template set to False or None. "
                "Therefore no chat template will be applied. Make sure this is an intended behavior."
            )
            return None

        # Convert boolean chat_template to None to ensure compatibility with the adapted logic
        if isinstance(chat_template, bool):
            chat_template = None
        using_default_template = False

        # First, handle the cases when the model has a dict of multiple templates
        template = self.tokenizer.chat_template or self.tokenizer.default_chat_template

        if isinstance(template, dict):
            using_default_dict = self.tokenizer.chat_template is None

            if chat_template is not None:
                if chat_template in template:
                    selected_template = template[chat_template]
                    if using_default_dict:
                        using_default_template = True
                else:
                    raise ValueError(
                        f"The specified chat template '{chat_template}' is not available. "
                        f"Available template names are {sorted(template.keys())}."
                    )
            else:
                # If user didn't pass a chat template, use the default template from the dict
                if "default" in template:
                    selected_template = template["default"]
                    using_default_template = True
                else:
                    raise ValueError(
                        "This model has multiple chat templates with no default specified! Please either pass a chat "
                        "template or the name of the template you wish to use to the `chat_template` argument. Available "
                        f"template names are {sorted(template.keys())}."
                    )

        # Cases when the model has a single template or no template
        else:
            # priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template
            if isinstance(chat_template, str):
                eval_logger.warning(
                    "Chat template name provided, but the tokenizer's chat template is not a dictionary. "
                    "Using the tokenizer's chat template or the default template instead."
                )
            if self.tokenizer.chat_template is not None:
                selected_template = self.tokenizer.chat_template
            else:
                selected_template = self.tokenizer.default_chat_template
                using_default_template = True

        if using_default_template:
            eval_logger.warning(
                "No chat template is set for this tokenizer, falling back to a default class-level template. This is "
                "very error-prone, because models are often trained with templates different from the class default! "
                "Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which "
                "point any code depending on them will stop working. We recommend setting a valid chat template before "
                "then to ensure that this model continues working without issues."
            )

        return selected_template
KonradSzafer's avatar
KonradSzafer committed
537

538
539
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
540
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
        """
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
lintang's avatar
lintang committed
574
575
576
577
578
            elif (
                getattr(self.config, "model_type")
                in MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForVision2Seq
579
580
581
582
583
584
585
586
587
588
589
590
591
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
lintang's avatar
lintang committed
592
            transformers.AutoModelForVision2Seq,
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
618
        gpus: Optional[int] = None,
619
620
621
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
622
        # PEFT, delta weights and quantization options
623
        peft: Optional[str] = None,
624
        delta: Optional[str] = None,
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
642
643
644
645
646
647
648
649
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
650
            )
Nathan Habib's avatar
Nathan Habib committed
651
        )
652

653
654
655
656
657
658
659
660
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
661
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
662
663
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
664

665
666
667
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
668
                torch_dtype=get_dtype(dtype),
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

691
692
693
694
695
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

696
697
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
698
699
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
700
701
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
702
703
704
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
705
                self._model.resize_token_embeddings(len(self.tokenizer))
706
707
708
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
784
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
785
786
787
788
789
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
790
791
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
792
793
        else:
            max_length = self.max_length
794
795
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
796

Benjamin Fattori's avatar
Benjamin Fattori committed
797
798
799
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
800
801
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
802
803
804
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
805
806
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
807
808
809
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
810
811
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
812
813
814
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
815
            for _ in range(5):
816
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
817

Benjamin Fattori's avatar
Benjamin Fattori committed
818
819
            return batch_size

820
821
822
823
824
825
826
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
827

828
829
830
831
832
833
834
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
835
            clear_torch_cache()
836
837
            return batch_size

838
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
839
840
        return batch_size

baberabb's avatar
baberabb committed
841
842
843
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
844
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
845
846
847
848
849
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
850
        if add_special_tokens is None:
lintang's avatar
lintang committed
851
            if (self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM) or (self.AUTO_MODEL_CLASS == transformers.AutoModelForVision2Seq):
Lintang Sutawika's avatar
Lintang Sutawika committed
852
853
854
855
856
857
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
858

Lintang Sutawika's avatar
Lintang Sutawika committed
859
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
860

861
862
863
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
864

865
866
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
867
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
868
869
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
870
        padding_side: str = "left",
871
872
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
873
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
874
875
876
877
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
878
        add_special_tokens = {}
lintang's avatar
lintang committed
879
        if (self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM) or (self.AUTO_MODEL_CLASS == transformers.AutoModelForVision2Seq):
Lintang Sutawika's avatar
Lintang Sutawika committed
880
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
881
882
883

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
884
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
885
886
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
887
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
888
889
890
891
892
893
894
895
896
897
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
898
899
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
900
901
902

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
903
        :param inps: torch.Tensor
904
905
906
907
908
909
910
911
912
913
914
915
916
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
917
918
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
919
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
920
921
922
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
923
            else:
lintang's avatar
lintang committed
924
925
926
927
928
                assert (
                    self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    or self.AUTO_MODEL_CLASS == transformers.AutoModelForVision2Seq
                )
                return self.model(input_ids=inps).logits
929
930

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
931
        # temperature = 0.0 if not set
932
933
934
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
935
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
936
        do_sample = generation_kwargs.get("do_sample", None)
937
938
939
940
941

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
942
943
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
944
945
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
946
            self.tokenizer, stop, context.shape[1], context.shape[0]
947
        )
948
        return self.model.generate(
949
            input_ids=context,
950
951
            max_length=max_length,
            stopping_criteria=stopping_criteria,
952
            pad_token_id=self.tokenizer.pad_token_id,
953
954
955
            use_cache=True,
            **generation_kwargs,
        )
956

Baber Abbasi's avatar
Baber Abbasi committed
957
958
959
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
lintang's avatar
lintang committed
960
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
961
962
963
964
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
965
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
966
            logits = logits[:contlen]
lintang's avatar
lintang committed
967
968
969
970
971
972
973
974
        # if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
        else:
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
haileyschoelkopf's avatar
haileyschoelkopf committed
975

976
977
        return logits

978
979
980
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
981
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
982
983
984
985
986
987
988
989
990

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

991
992
993
        for (string,) in tqdm(
            [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
        ):
994
995
996
997
998
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
999
                        prefix_token=self.prefix_token_id,
1000
1001
1002
1003
1004
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1005
1006

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
Baber Abbasi's avatar
Baber Abbasi committed
1022
                requests=rolling_token_windows,
lintangsutawika's avatar
lintangsutawika committed
1023
1024
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

1036
1037
1038
            # cache this loglikelihood_rolling request
            self.cache_hook.add_partial("loglikelihood_rolling", (string,), string_nll)

1039
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1054
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1055
1056
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1057

Ethan Smith's avatar
Ethan Smith committed
1058
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1059
1060
1061
1062
1063
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
1064
1065
1066
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1067
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1068
            """Defines the key for the sorted method"""
1069
1070
1071
1072
1073
1074
1075
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1076
            toks = req[1] + req[2]
1077
1078
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1079
1080
1081
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1082
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1083
1084
1085
1086
1087
1088
1089
1090
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
lintang's avatar
lintang committed
1091
            if (self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM) or (self.AUTO_MODEL_CLASS == transformers.AutoModelForVision2Seq)
Baber Abbasi's avatar
Baber Abbasi committed
1092
1093
1094
1095
            and self.logits_cache
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1096
1097
1098

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1099
1100
1101
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1102
1103
1104
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1105
1106
1107
1108
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1109
1110
1111
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1112
            else None
1113
1114
        )

Baber Abbasi's avatar
Baber Abbasi committed
1115
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1116
1117
1118
1119
1120
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1121
        for chunk in chunks:
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1141
                # how this all works (illustrated on a causal decoder-only setup):
1142
1143
1144
1145
1146
1147
1148
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
lintang's avatar
lintang committed
1149
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
1150
1151
1152
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1153
                        device=self.device,
1154
                    )
1155
                    (inplen,) = inp.shape
1156
1157
1158
1159

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1160
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1161
                        (continuation_enc)[-self.max_length :],
1162
1163
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1164
                        dtype=torch.long,
1165
1166
                        device=self.device,
                    )
1167
1168
                    (contlen,) = cont.shape

1169
1170
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1171
1172
1173
1174
1175
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
lintang's avatar
lintang committed
1176
1177
1178
1179
1180
1181
1182
1183
                else:
                    # if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
                        device=self.device,
                    )
                    (inplen,) = inp.shape
1184

haileyschoelkopf's avatar
haileyschoelkopf committed
1185
1186
1187
1188
1189
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1190
1191
1192
1193

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1194

1195
1196
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
lintang's avatar
lintang committed
1197
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
1198
                # TODO: left-pad encoder inps and mask?
1199
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1200
1201
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1202
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1203
1204
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1205
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1206
1207
1208
1209
1210
1211
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
lintang's avatar
lintang committed
1212
1213
1214
1215
1216
            else:
                # if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                batched_inps = pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1217
1218
1219

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1220
            )  # [batch, padding_length (inp or cont), vocab]
1221

Baber Abbasi's avatar
Baber Abbasi committed
1222
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1223
1224
1225
1226
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1227
                # take only logits in the continuation
1228
                # (discard context toks if decoder-only ; discard right-padding)
1229
1230
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1231
                ctx_len = (
1232
                    inplen + (logits.shape[0] - padding_len_inp)
lintang's avatar
lintang committed
1233
                    if (self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM) or (self.AUTO_MODEL_CLASS == transformers.AutoModelForVision2Seq)
haileyschoelkopf's avatar
haileyschoelkopf committed
1234
1235
                    else None
                )
1236
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1237
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1238
1239
1240
1241

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1269
1270
1271
1272
1273
1274
1275
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1276
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1277
1278

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1279

1280
1281
        return re_ord.get_original(res)

1282
1283
1284
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1285
        res = []
1286

Baber Abbasi's avatar
Baber Abbasi committed
1287
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1288
            """Defines the key for the sorted method"""
1289
1290
1291
1292
1293
1294
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1295
1296
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1297

1298
1299
        pbar = tqdm(
            total=len(requests),
1300
            disable=(disable_tqdm or (self.rank != 0)),
1301
1302
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1303
        adaptive_batch_size = None
1304
1305
1306
1307
1308
1309
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1310
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1323

Baber Abbasi's avatar
Baber Abbasi committed
1324
1325
1326
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1327
1328
1329
1330
1331
1332
1333
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
achervyakov's avatar
achervyakov committed
1347
                        until = [until]
Baber Abbasi's avatar
Baber Abbasi committed
1348
1349
1350
1351
1352
1353
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1354
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1355
                )
1356
            # add EOS token to stop sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
1357
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1358
            if not until:
1359
1360
1361
                until = [eos]
            else:
                until.append(eos)
Baber Abbasi's avatar
Baber Abbasi committed
1362
1363
1364
1365
1366
1367
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
lintang's avatar
lintang committed
1368
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
Baber Abbasi's avatar
Baber Abbasi committed
1369
1370
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length
lintang's avatar
lintang committed
1371
1372
1373
1374
            # if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            else:
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1375
1376
1377
1378
1379
1380
1381
1382
1383

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1384

Baber Abbasi's avatar
Baber Abbasi committed
1385
1386
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1387

Baber Abbasi's avatar
Baber Abbasi committed
1388
1389
1390
1391
1392
1393
1394
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1395

Baber Abbasi's avatar
Baber Abbasi committed
1396
1397
1398
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
lintang's avatar
lintang committed
1399
                if (self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM) or (self.AUTO_MODEL_CLASS == transformers.AutoModelForVision2Seq):
Baber Abbasi's avatar
Baber Abbasi committed
1400
                    cont_toks = cont_toks[context_enc.shape[1] :]
1401

Baber Abbasi's avatar
Baber Abbasi committed
1402
                s = self.tok_decode(cont_toks)
1403

Baber Abbasi's avatar
Baber Abbasi committed
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1417

1418
        pbar.close()
1419

Baber Abbasi's avatar
Baber Abbasi committed
1420
        return res
1421

KonradSzafer's avatar
KonradSzafer committed
1422
1423
1424
1425
1426
1427
1428
1429
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
        return self.tokenizer.apply_chat_template(
            chat_history, tokenize=False, add_generation_prompt=True
        )

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
                eval_logger.warn(
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info