gpt2.py 13.2 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
import torch
Xingjian Shi's avatar
Xingjian Shi committed
2
import transformers
Jason Phang's avatar
gpt3  
Jason Phang committed
3

4
from tqdm import tqdm
Jason Phang's avatar
gpt3  
Jason Phang committed
5

6
7
8
import torch.nn.functional as F

from lm_eval import utils
lintangsutawika's avatar
lintangsutawika committed
9
from lm_eval.logger import eval_logger
10
from lm_eval.api.model import LM, register_model
11

12
13
from accelerate import Accelerator
from itertools import islice
14
15


16
@register_model("hf-causal", "gpt2")
17
class HFLM(LM):
Fabrizio Milo's avatar
Fabrizio Milo committed
18
19
20
21
22
    def __init__(
        self,
        device="cuda",
        pretrained="gpt2",
        revision="main",
Xingjian Shi's avatar
Xingjian Shi committed
23
        low_cpu_mem_usage=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
24
25
26
27
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
Leo Gao's avatar
Leo Gao committed
28
        super().__init__()
29
30
31
32
33

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)

34
35
        gpus = torch.cuda.device_count()
        if gpus <= 1:
36
            if device:
37
38
39
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
40
                eval_logger.info(f"Using device '{device}'")
41
            else:
42
43
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
44
45
46
47
48
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
49
50
            self._rank = 0
            self._world_size = 1
51

52
        else:
53
            self._device = "cpu"
54

55
56
57
        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

58
        self.gpt2 = transformers.AutoModelForCausalLM.from_pretrained(
Xingjian Shi's avatar
Xingjian Shi committed
59
            pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage
60
        ).to(self.device)
Leo Gao's avatar
Leo Gao committed
61
        self.gpt2.eval()
Leo Gao's avatar
Leo Gao committed
62

63
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
Fabrizio Milo's avatar
Fabrizio Milo committed
64
            pretrained if tokenizer is None else tokenizer,
65
            revision=revision,
Fabrizio Milo's avatar
Fabrizio Milo committed
66
        )
67

68
        self.vocab_size = self.tokenizer.vocab_size
69

70
        # multithreading and batching
71
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size
72

73
        # multigpu support with accelerate
74
        if gpus > 1:
lintangsutawika's avatar
fixes  
lintangsutawika committed
75
            accelerator = Accelerator()
76
            if gpus > accelerator.num_processes:
77
                eval_logger.warning(
lintangsutawika's avatar
fixes  
lintangsutawika committed
78
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
79
80
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
lintangsutawika's avatar
fixes  
lintangsutawika committed
81
                    f"Current run will proceed with {accelerator.num_processes} devices."
82
                )
83
84
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
85
86
87
88
            else:
                self.gpt2 = accelerator.prepare(self.gpt2)
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator
89

90
                if self.accelerator.is_local_main_process:
91
                    eval_logger.info(f"Using {gpus} devices with data parallelism")
92

93
94
                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
95

96
97
98
99
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id
100

101
102
103
    @property
    def max_length(self):
        try:
lintangsutawika's avatar
fixes  
lintangsutawika committed
104
            if hasattr(self, "accelerator"):
105
106
107
                return self.accelerator.unwrap_model(self.gpt2).config.n_ctx
            else:
                return self.gpt2.config.n_ctx
108
109
        except AttributeError:
            # gptneoconfig doesn't have n_ctx apparently
lintangsutawika's avatar
fixes  
lintangsutawika committed
110
111
112
113
            if hasattr(self, "accelerator"):
                return self.accelerator.unwrap_model(
                    self.gpt2
                ).config.max_position_embeddings
114
115
            else:
                return self.gpt2.config.max_position_embeddings
116

117
118
119
    @property
    def max_gen_toks(self):
        return 256
Leo Gao's avatar
Leo Gao committed
120

121
122
    @property
    def batch_size(self):
123
        return self.batch_size_per_gpu
Leo Gao's avatar
Leo Gao committed
124

125
126
127
    @property
    def device(self):
        return self._device
Leo Gao's avatar
Leo Gao committed
128

129
130
131
132
133
134
135
    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size
Leo Gao's avatar
Leo Gao committed
136

137
138
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)
Fabrizio Milo's avatar
Fabrizio Milo committed
139

140
141
142
    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

Leo Gao's avatar
Leo Gao committed
143
144
145
146
147
148
    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
149
        logits returned from the model
Leo Gao's avatar
Leo Gao committed
150
        """
151
        with torch.no_grad():
152
            return self.gpt2(inps)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
153

154
155
    def _model_generate(self, context, max_length, eos_token_id):
        return self.gpt2.generate(
lintangsutawika's avatar
lintangsutawika committed
156
157
158
159
160
            context,
            max_length=max_length,
            pad_token_id=eos_token_id,
            eos_token_id=eos_token_id,
            do_sample=False,
161
162
        )

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
lintangsutawika's avatar
fixes  
lintangsutawika committed
183
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
184
185
186
187
188
189
190
191
192
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
193
                )
194
            )
195

196
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]
197

198
199
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
200

lintangsutawika's avatar
fixes  
lintangsutawika committed
201
            pad_amnt = 0
202
            if self.world_size > 1:
lintangsutawika's avatar
fixes  
lintangsutawika committed
203
204
205
206
                # TODO: Comment on what we do here
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
207
208
                )

209
210
                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
lintangsutawika's avatar
fixes  
lintangsutawika committed
211
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
212
213
214
215
216

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

217
218
            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
219
220
221
222
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

223
224
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

        return loglikelihoods

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        # TODO: automatic (variable) batch size detection for vectorization
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
246
247
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
            self.batch_size,
248
        ):
lintangsutawika's avatar
fixes  
lintangsutawika committed
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
            inps = []
            cont_toks_list = []
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # gpt2    \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
                ).to(self.device)
                (inplen,) = inp.shape

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )

                # pad length from seq to padding_length
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )

                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
                inplens.append(inplen)

            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]

            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):

                # Slice to original seq length
                contlen = len(cont_toks)
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

        return re_ord.get_original(res)

    def greedy_until(self, requests):
        # TODO: implement fully general `until` that handles until that are
        #       multiple tokens or that span multiple tokens correctly

        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer([req.args for req in requests], _collate)

        for context, until in tqdm(re_ord.get_reordered()):
            if isinstance(until, str):
                until = [until]

            (primary_until,) = self.tok_encode(until[0])

            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)

            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])

            for term in until:
                s = s.split(term)[0]

            res.append(s)
369

370
        return re_ord.get_original(res)